Resource Type

6 Matching Results

Results open in a new window/tab.

Probing the spin polarization of current by soft x-ray imaging of current-induced magnetic vortex dynamics (open access)

Probing the spin polarization of current by soft x-ray imaging of current-induced magnetic vortex dynamics

Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micron-sized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the resonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 {+-} 0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque.
Date: December 9, 2008
Creator: Kasai, Shinya; Fischer, Peter; Im, Mi-Young; Yamada, Keisuke; Nakatani, Yoshinobu; Kobayashi, Kensuke et al.
System: The UNT Digital Library
Field driven ferromagnetic phase nucleation and propagation from the domain boundaries in antiferromagnetically coupled perpendicular anisotropy films (open access)

Field driven ferromagnetic phase nucleation and propagation from the domain boundaries in antiferromagnetically coupled perpendicular anisotropy films

We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.
Date: December 9, 2008
Creator: Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter et al.
System: The UNT Digital Library
Multiscale integration schemes for jump-diffusion systems (open access)

Multiscale integration schemes for jump-diffusion systems

We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.
Date: December 9, 2008
Creator: Givon, D. & Kevrekidis, I.G.
System: The UNT Digital Library
DEVELOPMENT OF AG-1 SECTION FI ON METAL MEDIA FILTERS - 9061 (open access)

DEVELOPMENT OF AG-1 SECTION FI ON METAL MEDIA FILTERS - 9061

Development of a metal media standard (FI) for ASME AG-1 (Code on Nuclear Air and Gas Treatment) has been under way for almost ten years. This paper will provide a brief history of the development process of this section and a detailed overview of its current content/status. There have been at least two points when dramatic changes have been made in the scope of the document due to feedback from the full Committee on Nuclear Air and Gas Treatment (CONAGT). Development of the proposed section has required resolving several difficult issues associated with scope; namely, filtering efficiency, operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality control/acceptance testing. A proposed version of Section FI is currently undergoing final revisions prior to being submitted for balloting. The section covers metal media filters of filtering efficiencies ranging from medium (less than 99.97%) to high (99.97% and greater). Two different types of high efficiency filters are addressed; those units intended to be a direct replacement of Section FC fibrous glass HEPA filters and those that will be placed into newly designed systems capable of supporting greater static pressures and differential pressures across the filter elements. Direct replacements of FC HEPA filters …
Date: December 9, 2008
Creator: Adamson, D & Charles A. Waggoner, C
System: The UNT Digital Library
Exact sub-grid interface correction schemes for elliptic interface problems (open access)

Exact sub-grid interface correction schemes for elliptic interface problems

We introduce a non-conforming finite element method for second order elliptic interface problems. Our approach applies to problems in which discontinuous coefficients and singular sources on the interface may give rise to jump discontinuities in either the solution or its normal derivative. Given a standard background mesh and an interface that passes between elements, the key idea is to construct a singular correction function which satisfies the prescribed jump conditions, providing accurate sub-grid resolution of the discontinuities. Utilizing the closest point extension and an implicit interface representation by the signed distance function, an algorithm is established to construct the correction function. The result is a function which is supported only on the interface elements, represented by the regular basis functions, and bounded independently of the interface location with respect to the background mesh. In the particular case of a constant second order coefficient, our regularization by singular function is straightforward, and the resulting left-hand-side is identical to that of a regular problem without introducing any instability. The influence of the regularization appears solely on the right-hand-side, which simplifies the implementation. In the more general case of discontinuous second order coefficients, a normalization is invoked which introduces a constraint equation on …
Date: December 9, 2008
Creator: Huh, J. S. & Sethian, J. A.
System: The UNT Digital Library
Some free boundary problems in potential flow regime usinga based level set method (open access)

Some free boundary problems in potential flow regime usinga based level set method

Recent advances in the field of fluid mechanics with moving fronts are linked to the use of Level Set Methods, a versatile mathematical technique to follow free boundaries which undergo topological changes. A challenging class of problems in this context are those related to the solution of a partial differential equation posed on a moving domain, in which the boundary condition for the PDE solver has to be obtained from a partial differential equation defined on the front. This is the case of potential flow models with moving boundaries. Moreover the fluid front will possibly be carrying some material substance which will diffuse in the front and be advected by the front velocity, as for example the use of surfactants to lower surface tension. We present a Level Set based methodology to embed this partial differential equations defined on the front in a complete Eulerian framework, fully avoiding the tracking of fluid particles and its known limitations. To show the advantages of this approach in the field of Fluid Mechanics we present in this work one particular application: the numerical approximation of a potential flow model to simulate the evolution and breaking of a solitary wave propagating over a slopping …
Date: December 9, 2008
Creator: Garzon, M.; Bobillo-Ares, N. & Sethian, J. A.
System: The UNT Digital Library