Resource Type

1 Matching Results

Results open in a new window/tab.

Magnetic and inertial fusion status and development plans (open access)

Magnetic and inertial fusion status and development plans

Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10/sup 13/ cm/sup -3/ . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10/sup 14/ cm/sup -3/ . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to …
Date: December 4, 1987
Creator: Correll, D. & Storm, E.
System: The UNT Digital Library