1,422 Matching Results

Results open in a new window/tab.

Strategies for Determining the Nature of Dark Matter (open access)

Strategies for Determining the Nature of Dark Matter

None
Date: February 29, 2008
Creator: Hooper, Dan; /Fermilab; Baltz, Edward A. & /KIPAC, Menlo Park
System: The UNT Digital Library
X-Ray Active Matrix Pixel Sensors Basedon J-FET Technology Developed for the Linac Coherent Light Source. (open access)

X-Ray Active Matrix Pixel Sensors Basedon J-FET Technology Developed for the Linac Coherent Light Source.

An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.
Date: October 29, 2007
Creator: Carini, G. A.; Chen, W.; Li, Z.; Rehak, P. & Siddons, D. P.
System: The UNT Digital Library
Compact Analytic Expression for the Electric Field of a 2DElliptical Charge Distribution Inside a Perfectly Conducting CircularCylinder (open access)

Compact Analytic Expression for the Electric Field of a 2DElliptical Charge Distribution Inside a Perfectly Conducting CircularCylinder

By combining the method of images with calculus of complex variables, we provide a simple expression for the electric field of a two-dimensional (2D) static elliptical charge distribution inside a perfectly conducting cylinder. The charge distribution need not be concentric with the cylinder.
Date: May 29, 2007
Creator: Furman, M. A.
System: The UNT Digital Library
In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions (open access)

In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions

X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing the elemental composition of surfaces and the local chemical environment of adsorbed species. Conventional XPS experiments have been limited to ultrahigh vacuum (UHV) conditions due to a short mean free path of electrons in a gas phase. The recent advances in instrumentation coupled with third-generation synchrotron radiation sources enables in-situ XPS measurements at pressures above 5 Torr. In this review, we describe the basic design of the ambient pressure XPS setup that combines differential pumping with an electrostatic focusing. We present examples of the application of in-situ XPS to studies of water adsorption on the surface of metals and oxides including Cu(110), Cu(111), TiO2(110) under environmental conditions of water vapor pressure. On all these surfaces we observe a general trend where hydroxyl groups form first, followed by molecular water adsorption. The importance of surface OH groups and their hydrogen bonding to water molecules in water adsorption on surfaces is discussed in detail.
Date: October 29, 2007
Creator: Salmeron, Miquel; Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H. et al.
System: The UNT Digital Library
Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering (open access)

Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering

The formation and evolution of massive red galaxies form a crucial test of theories of galaxy formation based on hierarchical assembly. In this Letter we use observations of the clustering of luminous red galaxies from the Boötes field and N-body simulations to argue that about of the most luminous satellite galaxies appear to undergo merging or disruption within massive halos between and 0.5.
Date: November 29, 2006
Creator: White, Martin; White, Martin; Zheng, Zheng; Brown, Michael J. I.; Dey, Arjun & Jannuzi, Buell T.
System: The UNT Digital Library
Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2) (open access)

Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)

There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used …
Date: June 29, 2005
Creator: Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale & Starr, William
System: The UNT Digital Library
Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents (open access)

Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.
Date: January 29, 2008
Creator: Adams, K L; Steele, P T; Bogan, M J; Sadler, N M; Martin, S; Martin, A N et al.
System: The UNT Digital Library
Dirac charge dynamics in graphene by infrared spectroscopy (open access)

Dirac charge dynamics in graphene by infrared spectroscopy

A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrödinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.
Date: April 29, 2008
Creator: Martin, Michael C.; Li, Z. Q.; Henriksen, E. A.; Jiang, Z.; Hao, Z.; Martin, Michael C et al.
System: The UNT Digital Library
NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop (open access)

NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop

Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: NREL's FY09 CSP Resource Assessment Plans
Date: October 29, 2008
Creator: Renne, D.
System: The UNT Digital Library
Monochromatic Electron Photoemission from Diamondoid Monolayers (open access)

Monochromatic Electron Photoemission from Diamondoid Monolayers

None
Date: May 29, 2007
Creator: Yang, W. L.; Fabbri, J. D.; Willey, T. M.; Lee, J. I.; Dahl, J. E.; Carlson, R. K. et al.
System: The UNT Digital Library
Direct Photons at RHIC (open access)

Direct Photons at RHIC

Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.
Date: July 29, 2008
Creator: Gabor,D.
System: The UNT Digital Library
Uncertainty for Satellite and Station Solar Data in the Updated NSRDB (open access)

Uncertainty for Satellite and Station Solar Data in the Updated NSRDB

Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: Uncertainty for Satellite and Station Solar Data in the Updated NSRDB,
Date: October 29, 2008
Creator: Myers, D. R.
System: The UNT Digital Library
SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE (open access)

SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE

The Savannah River Site (SRS), a Department of Energy (DOE) facility, has over 30 million gallons of legacy waste from its many years of processing nuclear materials. The majority of waste is stored in 49 buried tanks. Available underground piping is the primary and desired pathway to transfer waste from one tank to another until the waste is delivered to the glass plant, DWPF, or the grout plant, Saltstone. Prior to moving the material, the tank contents need to be evaluated to ensure the correct destination for the waste is chosen. Access ports are available in each tank top in a number of locations and sizes to be used to obtain samples of the waste for analysis. Material consistencies vary for each tank with the majority of waste to be processed being radioactive salts and sludge. The following paper describes the progression of equipment and techniques developed to obtain core samples of salt and solid sludge at SRS.
Date: November 29, 2007
Creator: Nance, T; Daniel Krementz, D & William Cheng, W
System: The UNT Digital Library
Design and Construction Solutions in the Accurate Realization of NCSX Magnetic Fields (open access)

Design and Construction Solutions in the Accurate Realization of NCSX Magnetic Fields

The National Compact Stellarator Experiment, NCSX, is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge national Laboratory. The goal of NCSX is to provide the understanding necessary to develop an attractive, disruption free, steady state compact stellaratorbased reactor design. This paper describes the recently revised designs of the critical interfaces between the modular coils, the construction solutions developed to meet assembly tolerances, and the recently revised trim coil system that provides the required compensation to correct for the “as built” conditions and to allow flexibility in the disposition of as-built conditions. In May, 2008, the sponsor decided to terminate the NCSX project due to growth in the project’s cost and schedule estimates. However significant technical challenges in design and construction were overcome, greatly reducing the risk in the remaining work to complete the project.
Date: September 29, 2008
Creator: Heitzenroeder, P.; Dudek, Lawrence E.; Brooks, Arthur W.; Viola, Michael E.; Brown, Thomas; Neilson, George H. et al.
System: The UNT Digital Library
Surface Specularity as an Indicator of Shock-Induced Solid-Liquid Phase Transitions (open access)

Surface Specularity as an Indicator of Shock-Induced Solid-Liquid Phase Transitions

When highly polished metal surfaces melt upon release after shock loading, they exhibit a number of features that suggest that significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light in velocimetric measurements typically observed above pressures high enough to melt the free-surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometery, conductivity), changes in the specularity of reflection provide a dramatic, sensitive indicator of the solid-liquid phase transition. Data will be presented from multiple diagnostics that support the hypothesis that specularity changes indicate melt. These diagnostics include shadowgraphy, infrared imagery, high-magnification surface images, interferometric velocimetry, and most recently scattering angle measurements.
Date: June 29, 2007
Creator: Gerald Stevens, Stephen Lutz, William Turley, Lynn Veeser
System: The UNT Digital Library
Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media (open access)

Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media

In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.
Date: November 29, 2006
Creator: Kowalsky, Michael B. & Moridis, George J.
System: The UNT Digital Library
Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP (open access)

Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy …
Date: April 29, 2008
Creator: Stenerlöw, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn & Stenerlow, Bo
System: The UNT Digital Library
Effect of Random Clustering on Surface Damage Density Estimates (open access)

Effect of Random Clustering on Surface Damage Density Estimates

Identification and spatial registration of laser-induced damage relative to incident fluence profiles is often required to characterize the damage properties of laser optics near damage threshold. Of particular interest in inertial confinement laser systems are large aperture beam damage tests (>1cm{sup 2}) where the number of initiated damage sites for {phi}>14J/cm{sup 2} can approach 10{sup 5}-10{sup 6}, requiring automatic microscopy counting to locate and register individual damage sites. However, as was shown for the case of bacteria counting in biology decades ago, random overlapping or 'clumping' prevents accurate counting of Poisson-distributed objects at high densities, and must be accounted for if the underlying statistics are to be understood. In this work we analyze the effect of random clumping on damage initiation density estimates at fluences above damage threshold. The parameter {psi} = a{rho} = {rho}/{rho}{sub 0}, where a = 1/{rho}{sub 0} is the mean damage site area and {rho} is the mean number density, is used to characterize the onset of clumping, and approximations based on a simple model are used to derive an expression for clumped damage density vs. fluence and damage site size. The influence of the uncorrected {rho} vs. {phi} curve on damage initiation probability predictions is …
Date: October 29, 2007
Creator: Matthews, M J & Feit, M D
System: The UNT Digital Library
Inelastic final-state interaction (open access)

Inelastic final-state interaction

The final-state interaction in multichannel decay processes is systematically studied with application to B decay in mind. Since the final-state interaction is intrinsically interwoven with the decay interaction in this case, no simple phase theorem like"Watson's theorem" holds for experimentally observed final states. We first examine in detail the two-channel problem as a toy-model to clarify the issues and to remedy common mistakes made in earlier literature. Realistic multichannel problems are too challenging for quantitative analysis. To cope with mathematical complexity, we introduce a method of approximation that is applicable to the case where one prominent inelastic channel dominates over all others. We illustrate this approximation method in the amplitude of the decay B to pi K fed by the intermediate states of a charmed meson pair. Even with our approximation we need more accurate information of strong interactions than we have now. Nonetheless we are able to obtain some insight in the issue and draw useful conclusions on general features on the strong phases.
Date: October 29, 2007
Creator: Suzuki, Mahiko & Suzuki, Mahiko
System: The UNT Digital Library
Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated? (open access)

Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model …
Date: January 29, 2009
Creator: Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal et al.
System: The UNT Digital Library
Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica (open access)

Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica

Mitigation of 351nm laser-induced damage sites on fused silica exit surfaces by selective CO{sub 2} treatment has been shown to effectively arrest the exponential growth responsible for limiting the lifetime of optics in high-fluence laser systems. However, the perturbation to the optical surface profile following the mitigation process introduces phase contrast to the beam, causing some amount of downstream intensification with the potential to damage downstream optics. Control of the laser treatment process and measurement of the associated phase modulation is essential to preventing downstream 'fratricide' in damage-mitigated optical systems. In this work we present measurements of the surface morphology, intensification patterns and damage associated with various CO{sub 2} mitigation treatments on fused silica surfaces. Specifically, two components of intensification pattern, one on-axis and another off-axis can lead to damage of downstream optics and are related to rims around the ablation pit left from the mitigation process. It is shown that control of the rim structure around the edge of typical mitigation sites is crucial in preventing damage to downstream optics.
Date: October 29, 2007
Creator: Matthews, M. J.; Bass, I. L.; Guss, G. M.; Widmayer, C. C. & Ravizza, F. L.
System: The UNT Digital Library
Shape transitions in neutron-rich Ru isotopes: spectroscopy of 109,110,111,112Ru (open access)

Shape transitions in neutron-rich Ru isotopes: spectroscopy of 109,110,111,112Ru

The spectroscopy of neutron-rich {sup 109,110,111,112}Ru nuclei was studied by measuring the prompt {gamma} rays originated from fission fragments, produced by the {sup 238}U({alpha},f) fusion-fission reaction, in coincidence with the detection of both fragments. For {sup 109,111}Ru, both the negative-parity (h{sub 11/2} orbitals) and positive-parity (g{sub 7/2} and/or d{sub 5/2} orbitals) bands were extended to substantially higher spin and excitation energy than known previously. The ground-state and {gamma}-vibrational bands of {sup 110,112}Ru also were extended to higher spin, allowing observation of the second band crossing at the rotational frequency of {approx}450 keV in {sup 112}Ru, which is {approx}50 keV above the first band crossing. At a similar rotational frequency, the first band crossing for the h{sub 11/2} band in {sup 111}Ru was observed, which is absent in {sup 109}Ru. These band crossings most likely are caused by the alignment of the g{sub 9/2} proton pair. This early onset of the band crossing for the aligned {pi}g{sub 9/2} orbitals may be evidence of a triaxial shape transition from prolate to oblate occurring in {sup 111}Ru. The data together with a comparison of cranked shell model predictions are presented.
Date: June 29, 2005
Creator: Hua, H.; Cline, D.; Hayes, A. B.; Teng, R.; Riley, D.; Clark, R. M. et al.
System: The UNT Digital Library
Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols (open access)

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.
Date: January 29, 2008
Creator: Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W. P. et al.
System: The UNT Digital Library
A Validation of FEM3MP with Joint Urban 2003 Data (open access)

A Validation of FEM3MP with Joint Urban 2003 Data

Under the sponsorship of the U.S. DOE and DHS, we have recently developed a computational fluid dynamics (CFD) model for simulating airflow and dispersion of chemical/biological agents released in urban areas. Our model, FEM3MP, is based on solving the three-dimensional, time-dependent Navier-Stokes equations with appropriate physics submodels on massively parallel computer platforms. It employs finite-element discretization for effective treatment of complex geometries and a semi-implicit projection scheme for efficient time-integration. A simplified CFD approach, using both explicitly resolved and virtual buildings, was implemented to further improve the model's efficiency. Predictions from our model are continuously being verified against measured data from wind tunnel and field studies. Herein our model is further evaluated using observed data from IOPs (intensive operation periods) 3 and 9 of the Joint Urban 2003 field study conducted in Oklahoma City, Oklahoma, in July 2003. Our model predictions of wind and concentration fields in the near and intermediate regions, as well as profiles of wind speed, wind direction, friction velocity, and turbulent kinetic energy (TKE) in the urban wake region, are generally consistent with and compared reasonably well with field observations. In addition, our model was able to predict the observed split plume of IOP 3 and …
Date: August 29, 2006
Creator: Chan, S T & Leach, M J
System: The UNT Digital Library