58 Matching Results

Results open in a new window/tab.

Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas (open access)

Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of …
Date: September 27, 2010
Creator: Krommes, John E.
System: The UNT Digital Library
Star Forming Dense Cloud Cores in the TeV -ray SNR RX J1713.7-3946 (open access)

Star Forming Dense Cloud Cores in the TeV -ray SNR RX J1713.7-3946

RX J1713.7-3946 is one of the TeV {gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at {approx}1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the {sup 12}CO(J=2-1) and {sup 13}CO(J=2-1) transitions at angular resolution of 90 degrees. The most intense core in {sup 13}CO, peak C, was also mapped in the {sup 12}CO(J=4-3) transition at angular resolution of 38 degrees. Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r{sup -2.2 {+-} 0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that …
Date: October 27, 2010
Creator: Sano, H.; Sato, J.; Yamamoto, H.; Hayakawa, T.; Torii, K.; Moribe, N. et al.
System: The UNT Digital Library
Tracking tropical cloud systems for the diagnosis of simulations by the weather research and forecasting (WRF) model (open access)

Tracking tropical cloud systems for the diagnosis of simulations by the weather research and forecasting (WRF) model

To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit convection, to simulate the life cycle of tropical cloud systems in the tropical warm pool. The cloud life cycle is determined using a satellite cloud tracking algorithm (Boer and Ramanathan, J. Geophys. Res., 1997), and the statistics are compared to those of simulations using the Weather Research and Forecasting (WRF) Model. Using New York Blue, a Blue Gene/L supercomputer that is co-operated by Brookhaven and Stony Brook, simulations are run at a resolution comparable to the observations. Initial results suggest that the organization of the mesoscale convective systems is particularly sensitive to the cloud microphysics parameterization used.
Date: June 27, 2010
Creator: Vogelmann, A.M.; Lin, W.; Cialella, A.; Luke, E. P.; Jensen, M. P.; Zhang, M. H. et al.
System: The UNT Digital Library
Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling (open access)

Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling

We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.
Date: September 27, 2010
Creator: Yang, Luyi; Orenstein, J. & Lee, Dung-Hai
System: The UNT Digital Library
ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY (open access)

ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.
Date: September 27, 2010
Creator: Kriikku, E.; Tibrea, S. & Nance, T.
System: The UNT Digital Library
Centroid Position as a Function of Total Counts in a Windowed CMOS Image of a Point Source (open access)

Centroid Position as a Function of Total Counts in a Windowed CMOS Image of a Point Source

We obtained 960,200 22-by-22-pixel windowed images of a pinhole spot using the Teledyne H2RG CMOS detector with un-cooled SIDECAR readout. We performed an analysis to determine the precision we might expect in the position error signals to a telescope's guider system. We find that, under non-optimized operating conditions, the error in the computed centroid is strongly dependent on the total counts in the point image only below a certain threshold, approximately 50,000 photo-electrons. The LSST guider camera specification currently requires a 0.04 arcsecond error at 10 Hertz. Given the performance measured here, this specification can be delivered with a single star at 14th to 18th magnitude, depending on the passband.
Date: May 27, 2010
Creator: Wurtz, R. E.; Olivier, S.; Riot, V.; Hanold, B. J. & Figer, D. F.
System: The UNT Digital Library
Higher Order Mode Heating Analysis for the ILC Superconducting Linacs (open access)

Higher Order Mode Heating Analysis for the ILC Superconducting Linacs

The superconducting cavities and interconnects in the 11 km long linacs of the International Linear Collider (ILC) are designed to operate at 2K, where cooling costs are very expensive. It is thus important to minimize cryogenic heat loads. In addition to an unavoidable static load and the dynamic load of the fundamental 1.3 GHz accelerating rf, a further heat source is presented by the higher order mode (HOM) power deposited by the beam. Such modes will be damped by specially designed HOM couplers attached to the cavities (for trapped modes), and by ceramic dampers at 70K that are located between the eight or nine cavity cryomodules (for propagating modes). Brute force calculation of the higher frequency modes excited in a string of cryomodules is limited by computing capacity (see, e.g. [1]). M. Liepe has calculated {approx} 400 longitudinal TM modes in 3 superconducting cavities plus absorbers, up to 8 GHz [2]. Joestingmeier, et al., have used a ray tracing calculation to find the effect at higher frequencies, specifically in the range of tens of GHz and above [3]. In this report we present a scattering matrix approach, which we apply to an rf unit comprising 26 cavities and 3 absorbers. …
Date: October 27, 2010
Creator: Bane, K. L. F.; Nantista, C. & Adolphsen, C.
System: The UNT Digital Library
Gamma-Ray Emission From Crushed Clouds in Supernova Remnants (open access)

Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.
Date: October 27, 2010
Creator: Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu & Tanaka, Takaaki
System: The UNT Digital Library
Operation and Upgrades of the LCLS* (open access)

Operation and Upgrades of the LCLS*

The LCLS FEL began user operations in September 2009 with photon energies from 800eV to 2 KeV and pulse energies above 2 mJ. Both long pulse (50-200 femtosecond FWHM) and short pulse (<10 femtosecond FWHM at 150 uJ) pulses were delivered at user request. In addition the FEL was operated at fundamental photon energies up to 10 KeV in preparation for hard X-ray experiments. FEL operating parameters, performance and reliability results will be presented, in addition to plans for upgrades to the facility.
Date: October 27, 2010
Creator: Frisch, Josef
System: The UNT Digital Library
Reply to Comment on"Coherent rho0 photoproduction in bulk matter at high energies" (open access)

Reply to Comment on"Coherent rho0 photoproduction in bulk matter at high energies"

In their interesting comment on 'Coherent {rho}0 photoproduction in bulk matter at high energies', Rogers and Strikman point out that, at high energies, q{bar q} dipoles with small separations (d) become more important, and that most of the growth of the cross-section is 'driven by the increasingly large contributions from small size (high mass) configurations'; at photon energies of 10{sup 20} eV, over half of the total cross-section is due to dipoles smaller than 0.25 fm. They state that charm production will increase, and may be as much as 30% of the cross-section. The coherent photoproduction of heavier states requires higher energies than coherent {rho} photoproduction, because the formation length scales as 1/M{sup 2}. For the J/{psi}, the required photon energy is 14 times higher than for the {rho}. We agree that higher-mass states become important at higher energies. However, at this point, additional factors come into play; as we note after Eq. (7), our calculation is only properly normalized when the conversion probability is relatively small. At the energies where coherent production of high mass states is possible, the coherent {rho} production probability is large, and it is necessary to consider reverse reactions such as vector meson 'back-propagation' into …
Date: January 27, 2010
Creator: Couderc, E. & Klein, S.
System: The UNT Digital Library
Impedance Scaling for Small Angle Transitions (open access)

Impedance Scaling for Small Angle Transitions

Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce …
Date: October 27, 2010
Creator: Stupakov, G.; Bane, Karl & Zagorodnov, I.
System: The UNT Digital Library
The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database (open access)

The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database

Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of ~;;30K unique sequences (UniSeqs) representing ~;;19K clusters were generated from ~;;98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66percent of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases.Conclusions/Significance: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. …
Date: January 27, 2010
Creator: Tagmount, Abderrahmane; Wang, Mei; Lindquist, Erika; Tanaka, Yoshihiro; Teranishi, Kristen S.; Sunagawa, Shinichi et al.
System: The UNT Digital Library
Electron in a transverse harmonic cavity (open access)

Electron in a transverse harmonic cavity

We employ Hamiltonian light-front quantum field theory in a basis function approach to solve the non-perturbative problem of an electron in a strong scalar transverse confining potential. We evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the anticipated accuracy.
Date: October 27, 2010
Creator: Honkanen, H.; Maris, P.; Vary, J.P. & Brodsky, S.J.
System: The UNT Digital Library
PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS (open access)

PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A …
Date: September 27, 2010
Creator: Rudisill, T.; Hobbs, D. & Edwards, T.
System: The UNT Digital Library
A prototype station for ARIANNA: a detector for cosmic neutrinos (open access)

A prototype station for ARIANNA: a detector for cosmic neutrinos

The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 1017 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +- 6 m at the deployment site.
Date: May 27, 2010
Creator: Gerhardt, L.; Klein, S.; Stezelberger, T.; Barwick, S.; Dookayka, K.; Hanson, J. et al.
System: The UNT Digital Library
The $\hbar$ Expansion in Quantum Field Theory (open access)

The $\hbar$ Expansion in Quantum Field Theory

We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level …
Date: October 27, 2010
Creator: Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Hoyer, Paul & /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.
System: The UNT Digital Library
Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis (open access)

Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be …
Date: May 27, 2010
Creator: Manuel J. Manard, Stephan Weeks, Kevin Kyle
System: The UNT Digital Library
System Architecture of the Dark Energy Survey Camera Readout Electronics (open access)

System Architecture of the Dark Energy Survey Camera Readout Electronics

The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.
Date: May 27, 2010
Creator: Shaw, Theresa; /FERMILAB; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; /Barcelona, IFAE et al.
System: The UNT Digital Library
THE OXYGEN PERMEATION PROPERTIES OF NANO CRYSTALLINE CEO2 THIN FILMS (open access)

THE OXYGEN PERMEATION PROPERTIES OF NANO CRYSTALLINE CEO2 THIN FILMS

The measurement of oxygen flux across nanocrystalline CeO{sub 2} cerium oxide thin films at intermediate temperature (650 to 800 C) is presented. Porous ceria support substrates were fabricated by sintering with carbon additions. The final dense film was deposited from an optimized sol-gel solution resulting in a mean grain size of 50 nm which displayed oxygen flux values of up to 0.014 {micro}mol/cm{sup 2}s over the oxygen partial pressure range from air to helium gas used in the measurement at 800 C. The oxygen flux characteristics confirm mixed ionic and electronic conductivity in nanocrystalline ceria films and demonstrate the role of size dependent materials properties as a design parameter in functional membranes for oxygen separation.
Date: September 27, 2010
Creator: Brinkman, K.
System: The UNT Digital Library
Study of the Rare Hyperon Decay ${\boldmath \Omega^\mp \to \Xi^\mp \: \pi^+\pi^-}$ (open access)

Study of the Rare Hyperon Decay ${\boldmath \Omega^\mp \to \Xi^\mp \: \pi^+\pi^-}$

The authors report a new measurement of the decay {Omega}{sup -} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup -} with 76 events and a first observation of the decay {bar {Omega}}{sup +} {yields} {bar {Xi}}{sup +} {pi}{sup +}{pi}{sup -} with 24 events, yielding a combined branching ratio (3.74{sub -0.56}{sup +0.67}) x 10{sup -4}. This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with {Beta}({Omega}{sup -} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup -}) = 4.04{sub -0.71}{sup +0.83} x 10{sup -4} and {Beta}({bar {Omega}}{sup +} {yields} {bar {Xi}}{sup +} {pi}{sup +}{pi}{sup -}) = 3.15{sub -0.89}{sup +1.12} x 10{sup -4}. Contrary to theoretical expectation, they see little evidence for the decays {Omega}{sup -} {yields} {Xi}*{sub 1530}{sup 0} {pi}{sup -} and {bar {Omega}}{sup +} {yields} {bar {Xi}}*{sub 1530}{sup 0} {pi}{sup +} and place a 90% C.L. upper limit on the combined branching ratio {Beta}({Omega}{sup -}({bar {Omega}}{sup +}) {yields} {Xi}*{sub 1530}{sup 0} ({bar {Xi}}*{sub 1530}{sup 0}){pi}{sup {-+}}) < 7.0 x 10{sup -5}.
Date: July 27, 2010
Creator: Kamaev, O.; Solomey, N.; Burnstein, R. A.; Chakravorty, A.; CHen, Y. C.; Choong, W. S. et al.
System: The UNT Digital Library
RACORO Long-Term, Systematic Aircraft Observations of Boundary Layer Clouds (open access)

RACORO Long-Term, Systematic Aircraft Observations of Boundary Layer Clouds

Our knowledge of boundary layer cloud processes is insufficient to resolve pressing scientific problems. Boundary layer clouds often have liquid-water paths (LWPs) less than 100 gm{sup 2}, which are defined here as being 'thin' Clouds with Low Optical Water Depths (CLOWD). This type of cloud is common globally, and the Earth's radiative energy balance is particularly sensitive to small changes in their optical properties. However, it is difficult to retrieve accurately their cloud properties via remote sensing because they are tenuous and often occur in partly cloudy skies. This interferes with our ability to obtain the routine, long-term statistics needed to improve their representation in climate models. To address this problem, in-situ data are needed to investigate cloud processes and to evaluate and refine existing retrieval algorithms. Coordinated by the ARM Aerial Facility (AAF), the Routine AAF CLOWD Optical Radiative Observations (RACORO) field campaign conducted long-term, systematic flights in boundary layer, liquid-water clouds over the ARM Southern Great Plains (SGP) site between 22 January and 30 June 2009. This was the first time that a long-term aircraft campaign was undertaken for systematic in-situ sampling of cloud properties. Using the CIRPAS Twin Otter aircraft equipped with a comprehensive set of instruments …
Date: June 27, 2010
Creator: Vogelmann, A. M.; McFarquhar, G.; Ogren, J.; Turner, D. D.; Comstock, J. M.; Feingold, G. et al.
System: The UNT Digital Library
ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator (open access)

ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.
Date: October 27, 2010
Creator: Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K. et al.
System: The UNT Digital Library
Massive Degeneracy and Goldstone Bosons: A Challenge for the Light Cone (open access)

Massive Degeneracy and Goldstone Bosons: A Challenge for the Light Cone

Wherein it is argued that the light front formalism has problems dealing with Goldstone symmetries. It is further argued that the notion that in hadron condensates can explain Goldstone phenomena is false. This talk can be summarized as follows: (1) Exact symmetries can be realized in Wigner or Goldstone mode. (2) When a symmetry is realized in Wigner mode the states of the theory form degenerate irreducible representations of the symmetry group and the lowest energy state is unique. (3) When a symmetry is realized in Goldstone mode the lowest energy state of the theory is infinitely degenerate, the states of the theory do not form irreducible representations of the symmetry group and there are massless particles coupled by the conserved currents to any one of the possible ground states. (4) In finite volume the signal of a Goldstone realization of a symmetry is that the number of nearly degenerate states grows rapidly with increasing volume and the gap between these states shrinks exponentially with the volume. (5) The existence of a condensate such as the magnetization, for a ferromagnet, or the staggered magnetization for an anti-ferromagnet, signals a Goldstone symmetry. This is because this condensate transforms non-trivially under the …
Date: October 27, 2010
Creator: Weinstein, Marvin
System: The UNT Digital Library
Universal Bronsted-Evans-Polanyi Relations for C-C, C-O, C-N, N-O, N-N, and O-O Dissociation Reactions (open access)

Universal Bronsted-Evans-Polanyi Relations for C-C, C-O, C-N, N-O, N-N, and O-O Dissociation Reactions

It is shown that for all the essential bond forming and bond breaking reactions on metal surfaces, the reactivity of the metal surface correlates linearly with the reaction energy in a single universal relation. Such correlations provide an easy way of establishing trends in reactivity among the different transition metals.
Date: October 27, 2010
Creator: Wang, Shengguang
System: The UNT Digital Library