53 Matching Results

Results open in a new window/tab.

Material dynamics at extreme pressures and strain rates (open access)

Material dynamics at extreme pressures and strain rates

Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. [Re 2004] These extreme solid-state conditions can be accessed with either shock loading or with quasi-isentropic ramped pressure pulses being developed on the Omega laser. [Ed 2004] Velocity interferometer measurements establish the high strain rates. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced a-w phase transition in Ti is inferred to occur on sub-nanosecond time scales. [Ya 2004] Time resolved lattice response and phase can be inferred from dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). [Lo 2003] Subsequent large-scale MD simulations have elucidated the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. [Re 2004] For example, the slip-twinning threshold in single-crystal Cu …
Date: August 25, 2004
Creator: Remington, Bruce A.; Cavallo, Rob M.; Edwards, Michael J.; Ho, David D.; Lasinski, Barbara F.; Lorenz, Karl T. et al.
System: The UNT Digital Library
Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy (open access)

Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy

None
Date: March 25, 2004
Creator: Berger, E. L.
System: The UNT Digital Library
Boron-Carbide Barrier Layers in Scandium-Silicon Multilayers (open access)

Boron-Carbide Barrier Layers in Scandium-Silicon Multilayers

None
Date: March 25, 2004
Creator: Jankowski, Alan Frederic; Saw, Cheng K.; Walton, Christopher C.; Hayes, Jeffrey P. & Nilsen, Joseph
System: The UNT Digital Library
Removal of Mercury From Contaminated Soils at the Pavlodar Chemical Plant. (open access)

Removal of Mercury From Contaminated Soils at the Pavlodar Chemical Plant.

Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.
Date: September 25, 2004
Creator: Khrapunov, v. Ye.; Isakova, R. A.; Levintov, B. L.; Kalb, P. D.; Kamberov, I. M. & Trebukhov, A.
System: The UNT Digital Library
Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel (open access)

Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel

Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 degrees from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86 degrees, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88 degrees. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub 0} were much larger, of order {gamma}{sub 0} = 10{sub 4}. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to {approx}220 degrees had no effect on electron emission, …
Date: March 25, 2004
Creator: Molvik, A; Covo, M K; Bieniosek, F; Prost, L; Seidl, P; Baca, D et al.
System: The UNT Digital Library
Carbon Nanotube-Based Permeable Membranes: A Platform for Studying Nanofluidics (open access)

Carbon Nanotube-Based Permeable Membranes: A Platform for Studying Nanofluidics

A membrane of multiwalled carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Nitrogen flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate of 0.086 cc/sec. Calculations of water flow across a nanotube membrane give a rate of 2.1x10{sup -6} cc/sec (0.12 {micro}L/min).
Date: May 25, 2004
Creator: Holt, J K; Park, H G; Noy, A; Huser, T; Eaglesham, D & Bakajin, O
System: The UNT Digital Library
Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines (open access)

Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

The effects of fluoride on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) have been investigated. Up to 0.1 mol/L fluoride was added to the NaCl brines at 95 C, and three pH values of 4, 8, and 11 were selected for studying pH dependence of fluoride effects. It was observed that fluoride significantly altered the anodic polarization behavior, at all three pH values of 4, 8, and 11. Under acidic condition fluoride caused active corrosion. The corrosion of Titanium grade 7 was increased by three orders of magnitude when a 0.1 mol/L fluoride was added to the NaCl brines at pH 4, and the Pd ennoblement effect was not observed in acidic fluoride-containing environments. The effects of fluoride were reduced significantly when pH was increased to 8 and above.
Date: October 25, 2004
Creator: Lian, T; Whalen, M T & Wong, L
System: The UNT Digital Library
Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport (open access)

Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport

A membrane consisting of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for fluid mechanics studies on the nanometer scale. Characterization by tracer diffusion and scanning electron microscopy suggests that the membrane is free of large voids. An upper limit to the diffusive flux of D{sub 2}O of 2.4x10-{sup 8} mole/m{sup 2}-s was determined, indicating extremely slow transport. By contrast, hydrodynamic calculations of water flow across a nanotube membrane of similar specifications predict a much higher molar flux of 1.91 mole/m{sup 2}-s, suggesting that the nanotubes produced possess a 'bamboo' morphology. The carbon nanotube membranes were used to make nanoporous silicon nitride membranes, fabricated by sacrificial removal of the carbon. Nitrogen flow measurements on these structures give a membrane permeance of 4.7x10{sup -4} mole/m{sup 2}-s-Pa at a pore density of 4x10{sup 10} cm{sup -2}. Using a Knudsen diffusion model, the average pore size of this membrane is estimated to be 66 nm, which agrees well with TEM observations of the multiwall carbon nanotube outer diameter. These membranes are a robust platform for the study of confined molecular transport, with applications inseparations and chemical sensing.
Date: August 25, 2004
Creator: Holt, J K; Noy, A; Huser, T; Eaglesham, D & Bakajin, O
System: The UNT Digital Library
Laser Wakefield Acceleration Driven by Atf co2 Laser (Stella-Lw). (open access)

Laser Wakefield Acceleration Driven by Atf co2 Laser (Stella-Lw).

A new experiment has begun that builds upon the successful Staged Electron Laser Acceleration (STELLA) experiment, which demonstrated high-trapping efficiency and narrow energy spread in a staged laser-driven accelerator. STELLA was based upon inverse free electron lasers (IFEL); the new experiment, called STELLA-LW, is based upon laser wakefield acceleration (LWFA). The first phase of STELLA-LW will be to demonstrate LWFA in a capillary discharge driven by the Brookhaven National Laboratory Accelerator Test Facility (ATF) terawatt CO{sub 2} laser beam. This will be the first time LWFA is conducted at 10.6-{micro}m laser wavelength. It will also be operating in an interesting pseudo-resonant regime where the laser pulse length is too long for resonant LWFA, but too short for self-modulated LWFA. Analysis has shown that in pseudo-resonant LWFA, pulse-steepening effects occur on the laser pulse that permits generation of strong wakefields. Various approaches are being explored for the capillary discharge including polypropylene and hydrogen-filled capillaries. Planned diagnostics for the experiment include coherent Thomson scattering (CTS) to detect the wakefield generation. This will be one of the first times CTS is used on a capillary discharge.
Date: September 25, 2004
Creator: Kimura,W. D.; Andreev,N. E.; Babzien,M.; Ben-Zvi, Ilan & Al., Et
System: The UNT Digital Library
Precious Metal Recovery from Fuel Cell MEA's (open access)

Precious Metal Recovery from Fuel Cell MEA's

In 2003, Engelhard Corporation received a DOE award to develop a cost-effective, environmentally friendly approach to recover Pt from fuel cell membrane electrode assemblies (MEA’s). The most important precious metal used in fuel cells is platinum, but ruthenium is also added to the anode electrocatalyst if CO is present in the hydrogen stream. As part of the project, a large number of measurements of Pt and Ru need to be made. A low-cost approach to measuring Pt is using the industry standard spectrophotometric measurement of Pt complexed with stannous chloride. The interference of Ru can be eliminated by reading the Pt absorbance at 450 nm. Spectrophotometric methods for measuring Ru, while reported in the literature, are not as robust. This paper will discuss the options for measuring Pt and Ru using the method of UV-VIS spectrophotometry
Date: April 25, 2004
Creator: Shore, Lawrence
System: The UNT Digital Library
Handling the Handbag Diagram in Compton Scattering on the Proton (open access)

Handling the Handbag Diagram in Compton Scattering on the Proton

Poincare invariance, gauge invariance, conservation of parity and time reversal invariance are respected in an impulse approximation evaluation of the handbag diagram. Proton wave functions, previously constrained by comparison with measured form factors, that incorporate the influence of quark transverse and orbital angular momentum (and the corresponding violation of proton helicity conservation) are used. Computed cross sections are found to be in reasonably good agreement with early measurements. The helicity correlation between the incident photon and outgoing proton, K{sub LL}, is both large and positive at back angles. For photon laboratory energies of {le} 6 GeV, we find that K{sub LL} {ne} A{sub LL}, D{sub LL} {ne} 1, and that the polarization P can be large.
Date: February 25, 2004
Creator: Miller, Gerald A.
System: The UNT Digital Library
Associations between classroom CO2 concentrations and student attendance in Washington and Idaho (open access)

Associations between classroom CO2 concentrations and student attendance in Washington and Idaho

Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO{sub 2}). Absence and dCO{sub 2} data were collected from 409 traditional and 25 portable classrooms from 14 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO{sub 2} concentrations above 1000 parts-per-million (ppm). A 1000 ppm increase in dCO{sub 2} was associated (p < 0.05) with a 0.5% to 0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10% to 20% increase in student absence. Outside air (ventilation) rates estimated from dCO{sub 2} and other collected data were not associated with absence. Annual ADA was 2% higher (p < 0.0001) in …
Date: July 25, 2004
Creator: Shendell, Derek G.; Prill, Richard; Fisk, William J.; Apte, Michael G.; Blake, David & Faulkner, David
System: The UNT Digital Library
Electron beam diagnostic for space charge measurement of an ion beam (open access)

Electron beam diagnostic for space charge measurement of an ion beam

A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.
Date: September 25, 2004
Creator: Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef et al.
System: The UNT Digital Library
Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science (open access)

Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science

LUX is a design study to develop concepts for future ultrafast x-ray facilities. Presently, LUX is based on an electron beam accelerated to {approx}3-GeV energy in a superconducting, recirculating linac. Included in the design are multiple free-electron laser (FEL) beamlines which use the harmonic cascade approach to produce coherent XUV and soft X-ray emission beginning with a strong input seed at {approx}200-nm wavelength obtained from a ''conventional'' laser. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For a given cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine certain aspects of the predicted FEL performance. We also discuss lattice considerations pertinent to harmonic cascade FELs, some sensitivity studies and requirements on the undulator alignment, and temporal pulse evolution initiated by short input radiation seeds.
Date: August 25, 2004
Creator: Corlett, John; Fawley, William; Penn, Gregory; Wan, Weishi; Zholents, A.; Reinsch, M. et al.
System: The UNT Digital Library
Development of a functionalized Xenon biosensor (open access)

Development of a functionalized Xenon biosensor

NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon …
Date: March 25, 2004
Creator: Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G. et al.
System: The UNT Digital Library
2004 Atomic and Molecular Interactions Gordon Research Conference (open access)

2004 Atomic and Molecular Interactions Gordon Research Conference

The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference.
Date: October 25, 2004
Creator: Dagdigian, Dr. Paul J.
System: The UNT Digital Library
Hydrogen Storage Properties of the Tetrahydrofuran Treated Magnesium (open access)

Hydrogen Storage Properties of the Tetrahydrofuran Treated Magnesium

The electronic structure, crystalline feature and morphology of the tetrahydrofuran (THF) treated magnesium, along with its hydriding and dehydriding properties have been investigated. The THF treated magnesium absorbs 6.3 wt per cent hydrogen at 723K and 3.5 MPa. After hydrogenation, in addition to the expected MgH2, a new less-stable hydride phase appears at 673K, but not at a lower temperature. Desorption produces 5.5 wt per cent hydrogen at 723K against a back pressure of 1.3 Pa after 20 cycles of hydriding-dehydriding. The THF treatment improves the kinetics of hydrogen absorption and desorption significantly. From 723K to 623K, the THF treated Mg demonstrates acceptable reaction rates. XPS studies show that tetrahydrofuran treatment causes the electronic energy state of the magnesium surface atoms to change, but the XRD studies show the crystal structure remains unchanged. Metallographic observation of the bulk hydrides of THF treated magnesium reveal they are poly-crystalline wi th the wide-spreading slip bands and twins within the crystals, indicating the phase transformation upon hydriding causes serious stress and distortion. It appears this microstructural deformation explains the much higher energy requirements (higher pressure and temperature) for magnesium hydrogenation than the simple lattice expansion that accompany hydrogen uptake for LaNi5 and FeTi.
Date: May 25, 2004
Creator: AU, MING
System: The UNT Digital Library
Recent physics results from CDF and D0 (open access)

Recent physics results from CDF and D0

Recent physics results from CDF and D0 on heavy flavor physics, electroweak precision measurements, top physics, QCD and searches for new physics are discussed. The results are based on approximately 140 pb{sup -1} of data collected at {radical}s = 1.96 TeV between 2002 and 2003.
Date: February 25, 2004
Creator: Thomson, Evelyn
System: The UNT Digital Library
The CDF Run IIb Silicon Detector (open access)

The CDF Run IIb Silicon Detector

Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {micro}m CMOS technology. Single sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.
Date: February 25, 2004
Creator: Aoki, M.; Bacchetta, N. & al., S. Behari et
System: The UNT Digital Library
ProteinShop: A tool for interactive protein manipulation and steering (open access)

ProteinShop: A tool for interactive protein manipulation and steering

We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.
Date: May 25, 2004
Creator: Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd & Bethel, Wes
System: The UNT Digital Library
Observation and Measurement of MHD Activity Using Motional Stark Effect (MSE) Diagnostic (open access)

Observation and Measurement of MHD Activity Using Motional Stark Effect (MSE) Diagnostic

In a new mode of measurement, the amplitude of a tearing mode rotating at frequencies of up to tens of KHz has been obtained using the spectral features of high frequency MSE data. A formulation has been developed to calculate the pitch angle oscillations associated with these instabilities, from the MSE spectrum. Density fluctuations can be simultaneously obtained from MSE measurements if the intensity response to density variation can be calibrated. Examples of observations are given and detection limits are explored.
Date: June 25, 2004
Creator: Jayakumar, R; Makowski, M; Allen, S; Moller, J & Rhodes, T
System: The UNT Digital Library
Interferometric resolution boosting for spectrographs (open access)

Interferometric resolution boosting for spectrographs

Externally dispersed interferometry (EDI) is a technique for enhancing the performance of spectrographs for wide bandwidth high resolution spectroscopy and Doppler radial velocimetry. By placing a small angle-independent interferometer near the slit of a spectrograph, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moir{acute e} pattern, which manifests high detailed spectral information heterodyned down to detectably low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry. Previous demonstrations of {approx}2.5x resolution boost used an interferometer having a single fixed delay. We report new data indicating {approx}6x Gaussian resolution boost (140,000 from a spectrograph with 25,000 native resolving power), taken by using multiple exposures at widely different interferometer delays.
Date: May 25, 2004
Creator: Erskine, D J & Edelstein, J
System: The UNT Digital Library
Bounds and Estimates for Elastic Constants of Random Polycrystals of Laminates (open access)

Bounds and Estimates for Elastic Constants of Random Polycrystals of Laminates

In order to obtain formulas providing estimates for elastic constants of random polycrystals of laminates, some known rigorous bounds of Peselnick, Meister, and Watt are first simplified. Then, some new self-consistent estimates are formulated based on the resulting analytical structure of these bounds. A numerical study is made, assuming first that the internal structure (i.e., the laminated grain structure) is not known, and then that it is known. The purpose of this aspect of the study is to attempt to quantify the differences in the predictions of properties of the same system being modeled when such internal structure of the composite medium and spatial correlation information is and is not available.
Date: August 25, 2004
Creator: Berger, E. L.
System: The UNT Digital Library
Calculating Expectations with Time-Dependent Perturbations in Quantum Monte Carlo (open access)

Calculating Expectations with Time-Dependent Perturbations in Quantum Monte Carlo

None
Date: May 25, 2004
Creator: Kalos, M H & de Saavedra, F A
System: The UNT Digital Library