58 Matching Results

Results open in a new window/tab.

The dihadron fragmentation function and its evolution (open access)

The dihadron fragmentation function and its evolution

Dihadron fragmentation functions and their evolution arestudied in the process of e+e- annihilation. Under the collinearfactorization approximation and facilitated by the cut-vertex technique,the two hadron inclusive cross section at leading order (LO) is shown tofactorize into a short distance parton cross section and a long distancedihadron fragmentation function. We provide the definition of such adihadron fragmentation function in terms of parton matrix elements andderive its DGLAP evolution equation at leading log. The evolutionequation for the non-singlet quark fragmentation function is solvednumerically with a simple ansatz for the initial condition and resultsare presented for cases of physical interest.
Date: February 24, 2004
Creator: Majumder, Abhijit & Wang, Xin-Nian
System: The UNT Digital Library
Measurement of Electron Impact Collisional Excitation Cross Sections of Ni to Ga-Like Gold (open access)

Measurement of Electron Impact Collisional Excitation Cross Sections of Ni to Ga-Like Gold

None
Date: August 24, 2004
Creator: May, M.; Beiersdorfer, P.; Jordan, N.; Scofield, J.; Reed, K.; Hansen, S. et al.
System: The UNT Digital Library
Experimental investigation of high mach number 3D hydrodynamic jets at the National Ignition Facility (open access)

Experimental investigation of high mach number 3D hydrodynamic jets at the National Ignition Facility

The first hydrodynamics experiments were performed on the National Ignition Facility. A supersonic jet was formed via the interaction of a laser driven shock ({approx}40 Mbars) with 2D and 3D density perturbations. The temporal evolution of the jet's spatial scales and ejected mass were measured with point projection x-ray radiography. Measurements of the large-scale features and mass are in good agreement with 2D and 3D numerical simulations. These experiments are the first quantitative measurements of the evolution of 3D supersonic jets and provide insight into their 3D behavior.
Date: September 24, 2004
Creator: Blue, B. E.; Weber, S.; Glendinning, S.; Lanier, N.; Woods, D.; Bono, M. et al.
System: The UNT Digital Library
Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks (open access)

Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks

The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices.
Date: May 24, 2004
Creator: Rognlien, T.; Umansky, M.; Xu, X.; Cohen, R. & LoDestro, L.
System: The UNT Digital Library
Comparison of Plasma Parameters Between QH and ELMing Phases of the Same Discharges (open access)

Comparison of Plasma Parameters Between QH and ELMing Phases of the Same Discharges

H-mode confinement is observed for many energy confinement times without edge localized modes (ELMs) in QH (quiescent high-confinement)-mode discharges in DIII-D. To find critical differences between ELMing and QH modes we compared electron temperature (T{sub e}), density (n{sub e}), and ion temperature (T{sub i}), in the pedestal and scrape-off layer (SOL) for a group of discharges. We also compared the electron pressures P{sub ped}, and maximum pressure gradients P{sub e,ped,max grad} because of their importance in confinement and stability. Experimental results show that the core line averaged density, median T{sub e} (pedestal), SOL T{sub e}, and T{sub e} pedestal width, and SOL T{sub i} are nearly the same in QH mode as that during ELMs. The n{sub e} (average pedestal), n{sub e} pedestal width, P{sub ped}, and P{sub e,ped,max grad} are similar to corresponding values in QH mode and at various times between ELMs. However, the pedestal T{sub i} is 1.6 times higher in QH mode than during ELMing.
Date: May 24, 2004
Creator: Lasnier, C.; West, W.; Burrell, K.; deGrassie, J.; Doyle, E. & Osborne, T.
System: The UNT Digital Library
Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22 (open access)

Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22

The susceptibility or Alloy 22 (N06022) to crevice corrosion may depend on environmental or external factors and metallurgical or internal factors. Some of the most important environmental factors are chloride concentration, inhibitors, temperature and potential. The presence of a weld seam or second phase precipitation in the alloy are classified as internal factors. The localized corrosion resistance of Alloy 22 has been extensively investigated in the last five years, however not all affecting factors were considered in the studies. This paper discusses the current findings regarding the effect of many of these variables on the susceptibility (or resistance) of Alloy 22 to crevice corrosion. The effect of variables such as temperature, chloride concentration and nitrate are rather well understood. However there are only limited or no data regarding effect of other factors such as pH, other inhibitive or deleterious species and type of crevicing material and crevice geometry. There are contradictory results regarding the effect of metallurgical factors such as solution heat treatment.
Date: November 24, 2004
Creator: Rebak, R B
System: The UNT Digital Library
Evaporative Evolution of a Na-Cl-NO3-K-Ca-SO4-Mg-Si Brine at 95(degree)C: Experiments and Modeling relevant to Yucca Mountain, Nevada, USA (open access)

Evaporative Evolution of a Na-Cl-NO3-K-Ca-SO4-Mg-Si Brine at 95(degree)C: Experiments and Modeling relevant to Yucca Mountain, Nevada, USA

A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, Nevada (USA) was evaporated at 95 C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved towards a complex ''sulfate type'' brine that contained about 45 mol% Na, 40 mol% Cl, 9 mol% NO{sub 3}, 5 mol% K, and less than 1 mol% each of SO{sub 4}, Ca, Mg, {Sigma}CO{sub 2}(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter and nitratine. Trends in the solution composition and identification of CaSO{sub 4} solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer …
Date: August 24, 2004
Creator: Alai, M; Sutton, M & Carroll, S A
System: The UNT Digital Library
WxWindows Interface for CALE (open access)

WxWindows Interface for CALE

wxWindows is an Open Source, platform independent, User Interface (UI) which has been in development for over eleven years (http://www.wxwindows.org). Currently wxWindows is actively supported for the Linux/Unix (X11, Motif and GTK+), Mac OS 9 and X, all Win32 OSes, MGL, and OS/2 operating systems. wxWindows is written in C++ using an object oriented programming framework; it is a reasonably lightweight API (called wxWidgets) sitting over the native graphics packages of the various platforms it supports. The original version of CALE was written for the basic target platform of Unix using X11 as the graphics package. There have been separate efforts to port the code to Mac OS 9, Mac OS X, Win32, Windows Services for Unix (SFU) and CygWin. Each of these used a variety of different graphical interface approaches and build/make systems. For instance Windows SFU and CygWin could still only use X11 graphics. So could the Win32 version, if a X11 server library and client software were installed. A native Win32 version of CALE was contemplated, but never started. The Macintosh versions were completed but never widely distributed to the users. Given the growing code version support issues, and the slow deviation from the portable code model …
Date: November 24, 2004
Creator: Amala, P; Egner, C & Hagelberg, J
System: The UNT Digital Library
Dihadron correlations at high pT (open access)

Dihadron correlations at high pT

Jet quenching in the matter created in high energy nucleus/nucleus collisions provides a tomographic tool to probe the medium properties. Recent experimental results from the Relativistic Heavy-Ion Collider (RHIC) on characterization of jet production via dihadron correlations at high transverse momentum are reviewed. Expectations from the dihadron measurements for the lower energy {radical}s{sub NN} = 62.4 GeV RHIC run are discussed.
Date: July 24, 2004
Creator: Filimonov, Kirill
System: The UNT Digital Library
New physics searches with photons in CDF (open access)

New physics searches with photons in CDF

A brief review of searches for physics beyond the Standard Model with photons using the CDF detector at the Tevatron is given here. These include searches for supersymmetry, extra dimensions, excited electrons and W/Z+{gamma} production, as well as anomalous photon production. Recent results from CDF Run II experiment are presented, but some results from Run I are also reviewed.
Date: May 24, 2004
Creator: Lee, Sungwon
System: The UNT Digital Library
HB-Line Special Nuclear Material Campaigns: Model-Based Project Management (open access)

HB-Line Special Nuclear Material Campaigns: Model-Based Project Management

This study is to show how a model was used to enable management to better estimate production capabilities to ensure contract milestones/commitments are met, to cope with fast changing project baselines and project missions, to ensure the project will meet the negotiated throughput, and to eliminate unnecessary but costly design changes.
Date: March 24, 2004
Creator: Chang, Robert
System: The UNT Digital Library
Methane hydrate formation and dissociation in a partially saturated sand (open access)

Methane hydrate formation and dissociation in a partially saturated sand

To predict the behavior of hydrate-bearing sediments and the economic extractability of natural gas from reservoirs containing gas hydrates, we need reservoir simulators that properly represent the processes that occur, as well as accurate parameters. Several codes are available that represent some or all of the expected processes, and values for some parameters are available. Where values are unavailable, modelers have used estimation techniques to help with their predictions. Although some of these techniques are well respected, measurements are needed in many cases to verify the parameters. We have performed a series of experiments in a partially water saturated silica sand sample. The series included methane hydrate formation, and dissociation by both thermal stimulation and depressurization. The sample was 7.6 cm in diameter and 25 cm in length. In addition to measuring the system pressure and temperatures at four locations in the sample, we measured local density within the sample using x-ray computed tomography. Our goals in performing the experiment were to gather information for estimating thermal properties of the medium and to examine nonequilibrium processes.
Date: November 24, 2004
Creator: Kneafsey, Timothy J.; Tomutsa, Liviu; Taylor, Charles E.; Gupta, Arvind; Moridis, George; Freifeld, Barry et al.
System: The UNT Digital Library
Topology of charge density and elastic properties of Ti3SiC2 polymorphs (open access)

Topology of charge density and elastic properties of Ti3SiC2 polymorphs

Using an all-electron, full potential first-principles method, we have investigated the topology of charge density and elastic properties of the two polymorphs, alpha and beta, of Ti3SiC2. The bonding effect was analyzed based on Bader's quantum theory of ''atoms in molecules'' (AIM). It was found that the Ti-Si bonding effect is significantly weaker in beta than in alpha, giving less stabilizing effect for beta. The Si-C bonds, which are absent in alpha, are formed in beta and provide additional stabilizing effect for beta. In contrast to conventional thinking, there is no direction interaction between Ti atoms in both alpha and beta. The calculated elastic properties are in good agreement with the experimental results, giving the bulk modulus of about 180 GPa and the Poisson's ratio of 0.2. The beta phase is generally softer than the alpha phase. As revealed by the direction dependent Young's modulus, there is only slight elastic anisotropy in Ti3SiC2. For alpha, Young's modulus is minimum in the c direction and maximum in the directions 42o from c. For beta, the maximum lies in the c direction, in part due to the formation of Si-C bonds in this direction.
Date: June 24, 2004
Creator: Yu, Rong; Zhang, Xiao Feng; He, Lian Long & Ye, Heng Qiang
System: The UNT Digital Library
Infrared Thermography in High Level Waste (open access)

Infrared Thermography in High Level Waste

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of …
Date: August 24, 2004
Creator: GLEATON, DAVIDT.
System: The UNT Digital Library
Searches for physics beyond the standard model in ttbar events (open access)

Searches for physics beyond the standard model in ttbar events

The top quark is currently only observed at the Tevatron, where it is mainly produced in t{bar t} pairs. Due to the very high mass of the top quark compared to the other quarks and the gauge bosons, it is expected to play a special role in electroweak symmetry breaking. Therefore it might be especially sensitive to new physics. Measurements of various production and decay quantities of the top quark could lead to discoveries of physics beyond the standard model. Several such measurements were performed by the CDF collaboration during Run1 of the Tevatron. These measurements and first results from CDF in Run2 are presented.
Date: February 24, 2004
Creator: Merkel, P.
System: The UNT Digital Library
Micron-gap ThermoPhotoVoltaics (MTPV) (open access)

Micron-gap ThermoPhotoVoltaics (MTPV)

This paper discusses advances made in the field of Micron-gap ThermoPhotoVoltaics (MTPV). Initial modeling has shown that MTPV may enable significant performance improvements relative to conventional far field TPV. These performance improvements include up to a 10x increase in power density, 30% to 35% fractional increase in conversion efficiency, or alternatively, reduced radiator temperature requirements to as low as 550 C. Recent experimental efforts aimed at supporting these predictions have successfully demonstrated that early current and voltage enhancements could be done repeatedly and at higher temperatures. More importantly, these efforts indicated that no unknown energy transfer process occurs reducing the potential utility of MTPV. Progress has been made by running tests with at least one of the following characteristics relative to the MTPV results reported in 2001: Tests at over twice the temperature (900 C); Tests at 50% smaller gaps (0.12 {micro}m); Tests with emitter areas from 4 to 100 times larger (16 mm{sup 2} to 4 cm{sup 2}); and Tests with over 20x reduction in parasitic spacer heat flow. Remaining fundamental challenges to realizing these improvements relative to the recent breakthroughs in conventional far field TPV include reengineering the photovoltaic (PV) diode, filter, and emitter system for MTPV and …
Date: August 24, 2004
Creator: DiMatteo, R.; Greiff, P.; Seltzer, D.; Meaulenberg, D.; Brown, E.; Carlen, E. et al.
System: The UNT Digital Library
Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes (open access)

Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes

An increasing amount of electricity is used by equipment that is neither fully ''on'' nor fully ''off.'' We call these equipment states low power modes, or ''lopomos.'' ''Standby'' and ''sleep'' are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10 percent of residential energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate the market. Other sectors such as commercial buildings and industry also have lopomo energy use, perhaps totaling more in aggregate than that of households, but no comprehensive measurements have been made. In this paper, we propose a research agenda for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested parties. Overall, there is consensus that lopomo energy consumption is an important area for research. Many see this as a critical time for addressing lopomo issues. As equipment designs move from the binary ''on/off'' paradigm to one that encompasses multiple power modes, there is a …
Date: August 24, 2004
Creator: Payne, Christopher T. & Meier, Alan K.
System: The UNT Digital Library
Do indoor environments in schools influence student performance? A review of the literature (open access)

Do indoor environments in schools influence student performance? A review of the literature

Limited research is available on potential adverse effects of school environments on academic performance, despite strong public concern. We examine the scientific evidence relevant to this relationship by reviewing available research relating schools and other indoor environments to human performance or attendance. As a primary focus, we critically review evidence for direct relationships between indoor environmental quality (IEQ) in buildings and performance or attendance. As a secondary focus, we summarize, without critique, evidence on potential connections indirectly linking IEQ to performance or attendance: relationships between IEQ and health, between health and performance or attendance, and between attendance and performance. The most persuasive direct evidence showed increases in indoor concentrations of nitrogen dioxide and outdoor concentrations of several specific pollutants to be related to reduced school attendance. The most persuasive indirect evidence showed indoor dampness and microbiologic pollutants to be related to asthma and respiratory infections, which have in turn been related to reduced performance and attendance. Furthermore, a substantial scientific literature links poor IEQ (e.g., low ventilation rate, excess moisture or formaldehyde) with respiratory and other health effects in children and adults. Overall, evidence suggests that poor IEQ in schools can influence the performance and attendance of students, primarily through …
Date: November 24, 2004
Creator: Mendell, Mark J. & Heath, Garvin A.
System: The UNT Digital Library
Les Houches Guidebook to Monte Carlo generators for hadron collider physics (open access)

Les Houches Guidebook to Monte Carlo generators for hadron collider physics

Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.
Date: August 24, 2004
Creator: Dobbs, M.A
System: The UNT Digital Library
Elimination of Whole Effluent Toxicity NPDES Permit Limits through the Use of an Alternative Testing Species and Reasonable Potential Analysis (open access)

Elimination of Whole Effluent Toxicity NPDES Permit Limits through the Use of an Alternative Testing Species and Reasonable Potential Analysis

The cladoceran, Ceriodaphnia dubia (C. dubia), is required by the State of South Carolina to be used in whole effluent toxicity (WET) compliance tests in order to meet limits contained within National Pollutant Discharge Elimination System (NPDES) permits. Westinghouse Savannah River Company (WSRC) experienced WET test failures for no clear reason over a long period of time. Toxicity identification examinations on effluents did not indicate the presence of toxicants; therefore, the WET test itself was brought under suspicion. Research was undertaken with an alternate cladoceran, Daphnia ambigua (D. ambigua). It was determined that this species survives better in soft water, so approval was obtained from regulating authorities to use this ''alternate'' species in WET tests. The result was better test results and elimination of non-compliances. The successful use of D. ambigua allowed WSRC to gain approval from the South Carolina Department of Health and Environmental Control (SCDHEC) to remove WET limits from the NPDES permit.
Date: May 24, 2004
Creator: PAYNE, W.L.
System: The UNT Digital Library
Sorption of Cesium From Aqueous Waste Solution on SuperLig 644 Resin (open access)

Sorption of Cesium From Aqueous Waste Solution on SuperLig 644 Resin

The removal of cesium from aqueous waste solution was investigated in a column setup using SuperLig(R) 644 resin. The resin was significantly coarser in size than those used in previous studies because of hydraulic problems encountered during pilot-scale tests. The bed volume (BV = 140) at the onset of breakthrough surpassed the design requirement of 100 BV at 50 percent breakthrough. The percent of cesium removed by the resin at the onset of breakthrough was 99.96. The elution of cesium with 0.5 M HNO3 was satisfactory with a peak BV of 2.5. The elution BV for C/Co = 0.01 was 10, which is less than the target of 15 BV. The percent of sorbed cesium eluted from the resin was 99.88 percent. In addition, the BV of the various solutions used for the supporting process steps (feed displacement, post-feed displacement rinse, post-elution rinse, and regeneration) of the cesium ion exchange system was sufficient.
Date: August 24, 2004
Creator: ADU-WUSU, KOFI
System: The UNT Digital Library
Development of a Rotary Microfilter for SRS HLW Applications (open access)

Development of a Rotary Microfilter for SRS HLW Applications

The processing rate of Savannah River Site high level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross flow filter, produces 0.02 gpm/ft2 of filtrate under expected operating conditions. Savannah River National Laboratory personnel identified the rotary microfilter as a technology that could significantly increase filter flux, with throughput improvements of as much as 10X for that specific operation. With funding from the Department of Energy Office of Cleanup Technologies, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. This work includes pilot-scale and actual waste testing to evaluate system reliability, the impact of radiation on system components, the filter flux for a variety of waste streams, and relative performance for alternative filter media.
Date: November 24, 2004
Creator: MICHAEL, POIRIER
System: The UNT Digital Library
Analysis of the carbon-related 'blue' luminescence in GaN (open access)

Analysis of the carbon-related 'blue' luminescence in GaN

The properties of a broad 2.86 eV photoluminescence band in carbon-doped GaN were studied as a function of C-doping level, temperature, and excitation density. The results are consistent with a C{sub Ga}-C{sub N} deep donor-deep acceptor recombination mechanism as proposed by Seager et al. For GaN:C grown by molecular-beam epitaxy (MBE) the 2.86 eV band is observed in Si co-doped layers exhibiting high n-type conductivity as well as in semi-insulating material. For low excitation density (4 W/cm{sup 2}) the 2.86 eV band intensity decreases as a function of cw-laser exposure time over a period of many minutes. The transient behavior is consistent with a model based on carrier diffusion and charge trapping-induced Coulomb barriers. The temperature dependence of the blue luminescence below 150 K was different for carbon-contaminated GaN grown by metalorganic vapor phase epitaxy (MOVPE) compared to C-doped MBE GaN.
Date: September 24, 2004
Creator: Armitage, R.; Yang, Q. & Weber, E.R.
System: The UNT Digital Library
Investigation on a summer operation effect of a district energy system at Kitakyushu science research city (open access)

Investigation on a summer operation effect of a district energy system at Kitakyushu science research city

In Kitakyushu Science and Research Park, a new district energy system has been introduced. In this study, we chose this system as a case study and have carried out an analysis on the efficiency of the power generation and heat release utilization of the fuel cell and gas engine in summer by using the recorded data. The results can be summarized as follows; (1) Although the power generation efficiencies of the gas engine and fuel cell are a little bit lower than the standard designated value, they are almost running at stable condition. (2) The collected heat energy is lower than the designated value. The heat release utilization, which is used for cooling and hot water, is fairly low. Considering the efficient use of energy, it is a key to have a good use of heat release when we introduce a district energy system. (3) The discarded heat energy of the system is very big in this investigation when evaluating the system as a whole. It is fundamental to the future of energy conservation to use primary energy more efficiently.
Date: May 24, 2004
Creator: Gao, Weijun; Zhou, Nan; Nishida, Masaru; Sagara, Noriyasu; Ryu, Yuji & Ojima, Toshio
System: The UNT Digital Library