12 Matching Results

Results open in a new window/tab.

Engineering the Petawatt Laser into Nova (open access)

Engineering the Petawatt Laser into Nova

The engineering process of integrating the Petawatt (10{sup 15} watts) laser system into the existing 30 kJ (UV) Nova laser at Lawrence Livermore National Laboratory (LLNL) is described in detail. The nanosecond-long, chirped Petawatt laser pulse is initially generated in a separate master oscillator room and then injected into one of Nova`s 10 beamlines. There, the pulse is further amplified and enlarged to {approximately}{phi}60 cm, temporally compressed under vacuum to <500 fs using large diameter diffraction gratings, and then finally focused onto targets using a parabolic mirror. The major Petawatt components are physically large which created many significant engineering challenges in design, installation and implementation. These include the diffraction gratings and mirrors, vacuum compressor chamber, target chamber, and parabolic focusing mirror. Other Petawatt system components were also technically challenging and include: an injection beamline, transport spatial filters, laser diagnostics, alignment components, motor controls, interlocks, timing and synchronization systems, support structures, and vacuum systems. The entire Petawatt laser system was designed, fabricated, installed, and activated while the Nova laser continued its normal two-shift operation. This process required careful engineering and detailed planning to prevent experimental downtime and to complete the project on schedule.
Date: December 23, 1997
Creator: Tietbohl, Gregory L.; Bell, Perry M.; Hamilton, Ronald M.; Horner, Jeffrey B.; Horton, Robert L.; Ludwigsen, Arthur P. et al.
System: The UNT Digital Library
Accelerator modeling at SPEAR (open access)

Accelerator modeling at SPEAR

The response matrix, consisting of the closed orbit change at each beam position monitor (BPM) due to corrector magnet excitations, was measured and analyzed in order to calibrate a linear optics model of SPEAR. The model calibration was accomplished by varying model parameters to minimize the chi-square difference between the measured and the model response matrices. The singular value decomposition (SVD) matrix inversion method was used to solve the simultaneous equations. The calibrated model was then used to calculate corrections to the operational lattice. The results of the calibration and correction procedures are presented.
Date: May 23, 1997
Creator: LeBlanc, G. & Corbett, W.J.
System: The UNT Digital Library
Mid-wave infrared DIAL noise phenomenology (open access)

Mid-wave infrared DIAL noise phenomenology

LLNL has utilized optical parametric oscillator technology to develop and field a rapidly-tunable mid-wave infrared (MWIR) DIAL system. The system can be tuned at up to 1 KHz over the 3.3-3.8 micron spectral region, where hydrogen-bond stretching modes provide spectroscopic signatures for a wide variety of chemicals. We have fielded the DIAL system on the LLNL site with targets at horizontal ranges of up to 2 km. We have collected data on noise levels and correlations and their dependences on range, turbulence, and receiver aperture size. In this paper we describe some of the implications of this data for MWIR DIAL phenomenology. In particular, the interplay of turbulence and speckle to produce the observed noise fluctuations at short ranges (<500 m) is presented.
Date: July 23, 1997
Creator: Magnotta, F., Morris, J.R., Neuman, W.A., Scharlemann, E.T.
System: The UNT Digital Library
Using the cosmic microwave background to discriminate among inflation models (open access)

Using the cosmic microwave background to discriminate among inflation models

The upcoming satellite missions MAP and Planck will measure the spectrum of fluctuations in the Cosmic Microwave Background with unprecedented accuracy. I discuss the prospect of using these observations to distinguish among proposed models of inflationary cosmology.
Date: December 23, 1997
Creator: Kinney, W. H.
System: The UNT Digital Library
Optical assembly and alignment for the National Ignition Facility project (open access)

Optical assembly and alignment for the National Ignition Facility project

The National Ignition Facility (NIF) will use about 8,000 large optics to carry a high-power laser through a stadium-size building, and will do so on a very tight schedule and budget. The collocated Optics Assembly Building (OAB) will assemble and align, in a clean-room environment, the NIF`s large optics, which are the biggest optics ever assembled in such an environment. In addition, the OAB must allow for just-in-time processing and clean transfer to the areas where the optics will be used. By using a mixture of off-the-shelf and newly designed equipment and by working with industry, we have developed innovative handling systems to perform the clean assembly and precise alignment required for the full variety of optics, as well as for postassembly inspection. We have also developed a set of loading mechanisms that safely get the clean optics to their places in the main NIF building.
Date: December 23, 1997
Creator: Hurst, P. A.; Grasz, E. L.; Wong, H.; Schmitt, E. H. & Simmons, M. R.
System: The UNT Digital Library
Prospects of and requirements for nuclear power as a contributor toward managing greenhouse gases (open access)

Prospects of and requirements for nuclear power as a contributor toward managing greenhouse gases

The world`s population, energy demand, and rate of carbon emissions are increasing, but the rates of increase are uncertain. Even modest growth rates present significant challenges to existing and developing technologies for reducing carbon and greenhouse gas emissions while meeting growing energy demands. Nuclear power is currently the most developed alternative to fossil fuel combustion and is one of the options for meeting these challenges. However, there remain significant technical, economic and institutional barriers inhibiting growth of nuclear capacity in the U.S. and slowing implementation worldwide. In the near-term, the major barriers to nuclear power, especially in the U.S., appear to be economic and institutional, with the risks such as safety, waste management and proliferation having reasonably acceptable limits considering the current installed capacity. Future growth of nuclear power, however, may well hinge on continuous evolutionary and perhaps revolutionary reduction of these risks such that the overall risk of nuclear power, aggregated over the entire installed capacity, remains at or below today`s risks.
Date: October 23, 1997
Creator: Hassberger, J.A., Schock, R.N. & Isaacs, T.H.
System: The UNT Digital Library
Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for {lt}111{gt} screw dislocations in bcc-Mo (open access)

Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for {lt}111{gt} screw dislocations in bcc-Mo

Using multi-ion MGPT interatomic potentials derived from first- principles generalized pseudopotential theory, we have performed accurate atomistic simulations on the energetic of dislocation motion in the bcc transition metal Mo. Our calculated results include the (110) and (211) generalized stacking fault ({gamma}) energy surfaces, the Peierls stress required to move an ideal straight <111> screw dislocation, and the kink-pair formation energy for nonstraight screw dislocations. Many-body angular forces, which are accounted for in the present theory through explicit three- and four-ion potentials, are quantitatively important to such properties for the bcc transition metals. This is demonstrated explicitly through the calculated {gamma} surfaces, which are found to be 10-50% higher in energy than those obtained with pure radial-force models. The Peierls stress for an applied <111>/{l_brace}112{r_brace} shear is computed to be about 0.025{mu}, where {mu} is the bulk shear modulus. For zero applied stress, stable kink pairs are predicted to form for kink lengths greater than 4b, where b is the magnitude of the Burgers vector. For long kinks greater than 15b, the calculated asymptotic value of the kink-pair formation energy is 2.0 eV.
Date: May 23, 1997
Creator: Xu, W. & Moriarty, J.A.
System: The UNT Digital Library
A white beam neutron spin splitter (open access)

A white beam neutron spin splitter

The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.
Date: July 23, 1997
Creator: Krist, Thomas; Klose, Frank & Felcher, G. P.
System: The UNT Digital Library
Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate (open access)

Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate

We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century.
Date: December 23, 1997
Creator: Payne, S.A.; Beach, R.J. & Bibeau, C.
System: The UNT Digital Library
Study of the effects of polishing, etching, cleaving, and water leaching on the UV laser damage of fused silica (open access)

Study of the effects of polishing, etching, cleaving, and water leaching on the UV laser damage of fused silica

A damage morphology study was performed with a 355 nm Nd:YAG laser on synthetic UV-grade fused silica to determine the effects of post- polish chemical etching on laser-induced damage, compare damage morphologies of cleaved and polished surfaces, and understand the effects of the hydrolyzed surface layer and waste-crack interactions. The samples were polished , then chemically etched in buffered HF solution to remove 45,90,135, and 180 nm of surface material. Another set of samples was cleaved and soaked in boiling distilled water for 1 second and 1 hour. All the samples were irradiated at damaging fluencies and characterized by Normarski optical microscopy and scanning electron microscopy. Damage was initiated as micro-pits on both input and output surfaces of the polished fused silica sample. At higher fluencies, the micro-pits generated cracks on the surface. Laser damage of the polished surface showed significant trace contamination levels within a 50 nm surface layer. Micro-pit formation also appeared after irradiating cleaved fused silica surfaces at damaging fluences. Linear damage tracks corresponding cleaving tracks were often observed on cleaved surfaces. Soaking cleaved samples in water produced wide laser damage tracks.
Date: December 23, 1997
Creator: Yoshiyama, J.; Genin, F.Y.; Salleo, A.; Thomas, I.; Kozlowski, M.R.; Sheehan, L.M. et al.
System: The UNT Digital Library
Transport and handling of National Ignition Facility beamline optic modules (open access)

Transport and handling of National Ignition Facility beamline optic modules

Installing the thousands of optics that make up the laser for the National Ignition Facility (NIF) is a complex operation. This paper introduces the Optical Transport and Material Handling designs that will be used to deliver the optics. The transport and handling hardware is being designed to allow autonomous, semiautonomous, and manual operations.
Date: December 23, 1997
Creator: Yakuma, S. C.; Grasz, E. L.; Rowe, A. W.; Yourchenko, G.; Swan, D. A. & Robles, G. M.
System: The UNT Digital Library
Texture and Yield Stress of Pre-Strained 304L Stainless Steel (open access)

Texture and Yield Stress of Pre-Strained 304L Stainless Steel

The evolution of texture and yield stress in 304L stainless steel is investigated as a function of deformation to large plastic strains. Steel bars quasi-statically upset forged at a strain rate of 0.001s{sup -1} to true strains of 0, 0.5, 1.0 and 1.8 were found to acquire their texture ({approximately}3.0 m.r.d.) in the first 0.5 strain with (110) poles highly aligned parallel to the compression direction independent of whether the pre-forged starting material was in a cold worked or annealed (1050 C for 1 hour) condition. The same bars, when strained at room temperature show an incremental yield with pre-strain regardless of strain rate (10{sup -1} or 10{sup -3}s{sup -1}) or thermal history, though annealed bars yield at slightly lower stresses. At 77 K and strain rate 10{sup -3}s{sup -1}, the annealed 304L exhibits more pronounced strain-hardening behavior than the 304L forged in a cold-worked condition.
Date: June 23, 1997
Creator: Bennett, Kristin; Von Dreele, Robert B.; Gray, G. T., III & Chen, S. R.
System: The UNT Digital Library