Resource Type

Incorporation of high-level wastes in SYNROC: results from recent process-engineering studies at Lawrence Livermore National Laboratory (open access)

Incorporation of high-level wastes in SYNROC: results from recent process-engineering studies at Lawrence Livermore National Laboratory

In this paper, highlights from recent engineering research and development, in particular, results from fluidized bed calcination studies of SYNROC slurry are summarized. A schematic diagram of the envisioned SYNROC process (at this stage of development) is also presented. It shows the use of a fluidized bed calciner to prepare SYNROC powder that is then fed to a storage hopper. Bellows-type canisters are filled, evacuated, sealed and preheated. The preheated canisters are loaded into a hot isotactic pressing unit where they are densified, then removed and cooled and finally loaded into a waste storage container. After sealing, this container is decontaminated and transferred to the interim storage facility and then, ultimately, to an underground repository.
Date: April 15, 1982
Creator: Campbell, J. H.; Hoenig, C. L.; Ackerman, F. J.; Peters, P. E. & Grens, J. Z.
System: The UNT Digital Library
Evaluating Alternative Responses to Safeguards Alarms (open access)

Evaluating Alternative Responses to Safeguards Alarms

This paper describes a quantitative approach to help evaluate and respond to safeguards alarms. These alarms may be generated internally by a facility's safeguards systems or externally by individuals claiming to have stolen special nuclear material (SNM). This approach can be used to identify the most likely cause of an alarm - theft, hoax, or error - and to evaluate alternative responses to alarms. Possible responses include conducting investigations, initiating measures to recover stolen SNM, and replying to external threats. Based on the results of each alarm investigation step, the evaluation revises the likelihoods of possible causes of an alarm, and uses this information to determine the optimal sequence of further responses. The choice of an optimal sequence of responses takes into consideration the costs and benefits of successful thefts or hoaxes. These results provide an analytical basis for setting priorities and developing contingency plans for responding to safeguards alarms.
Date: April 15, 1982
Creator: Al-Ayat, R. A.; Judd, B. R. & McCord, R. K.
System: The UNT Digital Library
Current status of fast-neutron-capture calculations (open access)

Current status of fast-neutron-capture calculations

This work is primarily concerned with the calculation of neutron capture cross sections and capture gamma-ray spectra, in the framework of the Hauser-Feshbach statistical model and for neutrons from the resonance region up to several MeV. An argument is made that, for applied purposes such as constructing evaluated cross-section libraries, nonstatistical capture mechanisms may be completely neglected at low energies and adequately approximated at high energies in a simple way. The use of gamma-ray strength functions to obtain radiation widths is emphasized. Using the reaction /sup 89/Y + n as an example, the problems encountered in trying to construct a case that could be run equivalently on two different nuclear reaction codes are illustrated, and the effects produced by certain parameter variations are discussed.
Date: April 15, 1982
Creator: Gardner, D. G.
System: The UNT Digital Library
LLL calibration and standards facility (open access)

LLL calibration and standards facility

The capabilities of Lawrence Livermore Laboratory's Calibration and Standards Facility are delineated. The facility's ability to provide radiation fields and measurements for a variety of radiation safety applications and the available radiation measurement equipment are described. The need for national laboratory calibration labs to maintain traceability to a national standard are discussed as well as the areas where improved standards and standardization techniques are needed.
Date: April 15, 1980
Creator: Campbell, G.W. & Elliott, J.H.
System: The UNT Digital Library
Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor (open access)

Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor

Scoping calculations have been performed examining the consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel. The principal gas and vapor species released are shown to be Xe, Cs,and bond sodium contained within the fuel porosity. Fuel vapor pressure is insignificant, and there is no energetic fuel-coolant interaction for the conditions considered. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core (although reactor-material experiments are needed to confirm these high condensation rates). If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the implication is that the ability of vapor expansion to perform appreciable work on the system is largely eliminated. Furthermore, the ability of an expanding vapor bubble to transport fuel and fission product species to the cover gas region where they may be released to the containment is also largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool.
Date: April 15, 1985
Creator: Spencer, B.W. & Marchaterre, J.F.
System: The UNT Digital Library
Theoretical aspects of magnetic helicity (open access)

Theoretical aspects of magnetic helicity

None
Date: April 15, 1985
Creator: Hammer, J. H.
System: The UNT Digital Library
Progress in inertial fusion at LLNL (open access)

Progress in inertial fusion at LLNL

Experiments at LLNL using the 10 TW Novette laser have led to significantly increased understanding of laser/plasma coupling. Tests using 1.06 ..mu..m, 0.53 ..mu..m and 0.26 ..mu..m light have shown increased light absorption, increased efficiency of conversion to x-rays, and decreased production of suprathermal electrons as the wavelength of the incident light decreases. The data indicate that stimulated Raman scattering is the source of the excessive hot electrons and that the effect can be controlled by the proper selection of laser frequency and target material. The control of these effects has led to achievement of higher inertial fusion target compressions and to production of the first laboratory x-ray laser.
Date: April 15, 1985
Creator: Storm, E.
System: The UNT Digital Library
Flow characteristics of the Cascade granular blanket (open access)

Flow characteristics of the Cascade granular blanket

Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.
Date: April 15, 1985
Creator: Pitts, J.H. & Walton, O.R.
System: The UNT Digital Library
Pre-equilibrium decay processes in energetic heavy ion reactions (open access)

Pre-equilibrium decay processes in energetic heavy ion reactions

The Boltzmann master equation (BME) is defined for application to precompound decay in heavy ion reactions in the 10 100 MeV/nucleon regime. Predicted neutron spectra are compared with measured results for central collisions of /sup 20/Ne and /sup 12/C with /sup 165/Ho target nuclei. Comparisons are made with subthreshold ..pi../sup 0/ yields in heavy ion reactions between 35 and 84 MeV/nucleon, and with the ..pi../sup 0/ spectra. The BME is found to be an excellent tool for investigating these experimentally observed aspects of non-equilibrium heavy ion reactions. 18 refs., 8 figs.
Date: April 15, 1986
Creator: Blann, M.
System: The UNT Digital Library
Development of the cascade inertial-confinement-fusion reactor (open access)

Development of the cascade inertial-confinement-fusion reactor

Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis and experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.
Date: April 15, 1985
Creator: Pitts, J.H.
System: The UNT Digital Library
Computational methods for reversed-field equilibrium (open access)

Computational methods for reversed-field equilibrium

Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described.
Date: April 15, 1980
Creator: Boyd, John K.; Auerbach, Steven P.; Willmann, Peter A.; Berk, Herbert L. & McNamara, Brendan
System: The UNT Digital Library
Computational methods for reversed-field equilibrium (open access)

Computational methods for reversed-field equilibrium

Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described.
Date: April 15, 1980
Creator: Boyd, John K.; Auerbach, Steven P.; Willmann, Peter A.; Berk, Herbert L. & McNamara, Brendan
System: The UNT Digital Library
Pulse Star inertial confinement fusion reactor (open access)

Pulse Star inertial confinement fusion reactor

Pulse Star is a pool-type ICF reactor that emphasizes low cost and high safety levels. The reactor consists of a vacuum chamber (belljar) submerged in a compact liquid metal (Li/sub 17/Pb/sub 83/ or lithium) pool which also contains the heat exchangers and liquid metal pumps. The shielding efficiency of the liquid metal pool is high enough to allow hands-on maintenance of (removed) pumps and heat exchangers. Liquid metal is allowed to spray through the 5.5 m radius belljar at a controlled rate, but is prohibited from the target region by a 4 m radius mesh first wall. The wetted first wall absorbs the fusion x-rays and debris while the spray region absorbs the fusion neutrons. The mesh allows vaporized liquid metal to blow through to the spray region where it can quickly cool and condense. Preliminary calculations show that a 2 m thick first wall could handle the mechanical (support, buckling, and x-ray-induced hoop) loads. Wetting and gas flow issues are in an initial investigation stage.
Date: April 15, 1985
Creator: Blink, J. A. & Hogan, W. J.
System: The UNT Digital Library