Resource Type

184 Matching Results

Results open in a new window/tab.

Microcomputer-based pellet trajectory guidance system for the Baseball II-T experiment (open access)

Microcomputer-based pellet trajectory guidance system for the Baseball II-T experiment

In the Baseball II-T experiment a pellet generation and injection system was employed to place frozen ammonia pellets at the focus of a laser beam. The original trajectory guidance system suffered a number of problems that limited its accuracy and complicated the operation of the system. These problems were related to variable charge-to-mass ratios, timing, pellet discrimination, and computer speed. The original system design was improved by changes to the sensing components, microcomputer, and trajectory guidance system.
Date: October 15, 1977
Creator: Mortensen, W.K.
System: The UNT Digital Library
Safety questions relevant to nuclear thermal propulsion (open access)

Safety questions relevant to nuclear thermal propulsion

Nuclear propulsion is necessary for successful Mars exploration to enhance crew safety and reduce mission costs. Safety concerns are considered by some to be an implements to the use of nuclear thermal rockets for these missions. Therefore, an assessment was made of the various types of possible accident conditions that might occur and whether design or operational solutions exist. With the previous work on the NERVA nuclear rocket, most of the issues have been addressed in some detail. Thus, a large data base exist to use in an agreement. The assessment includes evaluating both ground, launch, space operations and disposal conditions. The conclusion is that design and operational solutions do exist for the safe use of nuclear thermal rockets and that both the environment and crews be protected against harmful radiation. Further, it is concluded that the use of nuclear thermal propulsion will reduce the radiation and mission risks to the Mars crews.
Date: October 15, 1991
Creator: Buden, D.
System: The UNT Digital Library
Increasing FTIR spectromicroscopy speed and resolution through compressive imaging (open access)

Increasing FTIR spectromicroscopy speed and resolution through compressive imaging

At the Advanced Light Source at Lawrence Berkeley National Laboratory, we are investigating how to increase both the speed and resolution of synchrotron infrared imaging. Synchrotron infrared beamlines have diffraction-limited spot sizes and high signal to noise, however spectral images must be obtained one point at a time and the spatial resolution is limited by the effects of diffraction. One technique to assist in speeding up spectral image acquisition is described here and uses compressive imaging algorithms. Compressive imaging can potentially attain resolutions higher than allowed by diffraction and/or can acquire spectral images without having to measure every spatial point individually thus increasing the speed of such maps. Here we present and discuss initial tests of compressive imaging techniques performed with ALS Beamline 1.4.3?s Nic-Plan infrared microscope, Beamline 1.4.4 Continuum XL IR microscope, and also with a stand-alone Nicolet Nexus 470 FTIR spectrometer.
Date: October 15, 2007
Creator: Gallet, Julien; Riley, Michael; Hao, Zhao & Martin, Michael C
System: The UNT Digital Library
Spatial resolution limits for synchrotron-based infrared spectromicroscopy (open access)

Spatial resolution limits for synchrotron-based infrared spectromicroscopy

Detailed spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source synchrotron facility in Berkeley, CA. The high-brightness synchrotron source is coupled at this beamline to a Thermo-Electron Continumum XL infrared microscope. Two types of resolution tests in both the mid-IR (using a KBr beamsplitter and an MCT-A* detector) and in the near-IR (using a CaF2 beamsplitter and an InGaAS detector) were performed and compared to a simple diffraction-limited spot size model. At the shorter wavelengths in the near-IR the experimental results begin to deviate from only diffraction-limited. The entire data set is fit using a combined diffraction-limit and demagnified electron beam source size model. This description experimentally verifies how the physical electron beam size of the synchrotron source demagnified to the sample stage on the endstation begins to dominate the focussed spot size and therefore spatial resolution at higher energies. We discuss how different facilities, beamlines, and microscopes will affect the achievable spatial resolution.
Date: October 15, 2007
Creator: Levenson, Erika; Lerch, Philippe & Martin, Michael C.
System: The UNT Digital Library
Analysis of Non-Enzymatically Glycated Peptides: Neutral-Loss Triggered MS3 Versus Multi-Stage Activation Tandem Mass Spectrometry (open access)

Analysis of Non-Enzymatically Glycated Peptides: Neutral-Loss Triggered MS3 Versus Multi-Stage Activation Tandem Mass Spectrometry

Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet available in all laboratories. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss triggered MS3 and multi-stage activation) during LC-MSn analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss triggered MS3 experiments, MS3 scans triggered by neutral-losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss triggered MS3 approach resulted in much higher specificity. Both techniques offer a viable alternative to ETD for identifying glycated peptides when that method is unavailable.
Date: October 15, 2008
Creator: Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.; Orton, Daniel J.; Monroe, Matthew E.; Yang, Feng et al.
System: The UNT Digital Library
Extension of the operating parameters of the two stage light gas gun to velocities below 2 km/sec. (open access)

Extension of the operating parameters of the two stage light gas gun to velocities below 2 km/sec.

None
Date: October 15, 2007
Creator: Thoe, R S
System: The UNT Digital Library
Detection of low energy single ion impacts in micron scaletransistors at room temperature (open access)

Detection of low energy single ion impacts in micron scaletransistors at room temperature

We report the detection of single ion impacts throughmonitoring of changes in the source-drain currents of field effecttransistors (FET) at room temperature. Implant apertures are formed inthe interlayer dielectrics and gate electrodes of planar, micro-scaleFETs by electron beam assisted etching. FET currents increase due to thegeneration of positively charged defects in gate oxides when ions(121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel regions. Implantdamage is repaired by rapid thermal annealing, enabling iterative cyclesof device doping and electrical characterization for development ofsingle atom devices and studies of dopant fluctuationeffects.
Date: October 15, 2007
Creator: Batra, A.; Weis, C. D.; Reijonen, J.; Persaud, A.; Schenkel, T.; Cabrini, S. et al.
System: The UNT Digital Library
John Pendry: His Contributions to the Development of LEED Surface Crystallography (open access)

John Pendry: His Contributions to the Development of LEED Surface Crystallography

In this paper we discuss the pivotal role played by Sir John Pendry in the development of Low Energy Electron Diffraction (LEED) during the past three decades; the earliest understanding on the physics of LEED to the development of sophisticated methods for the structural solution of complex surfaces.
Date: October 15, 2007
Creator: Somorjai, Gabor A. & Rous, P. J.
System: The UNT Digital Library
The National Ignition Facility: The world's largest optical system (open access)

The National Ignition Facility: The world's largest optical system

The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics at desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.
Date: October 15, 2007
Creator: Stolz, C J
System: The UNT Digital Library
Porphyrin-Based Photocatalytic Lithography (open access)

Porphyrin-Based Photocatalytic Lithography

Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.
Date: October 15, 2007
Creator: Bearinger, J.; Stone, G.; Christian, A.; Dugan, L.; Hiddessen, A.; Wu, K. J. et al.
System: The UNT Digital Library
Water adsorption on O(2x2)/Ru(0001) from STM experiments andfirst-principles calculations (open access)

Water adsorption on O(2x2)/Ru(0001) from STM experiments andfirst-principles calculations

We present a combined theoretical and experimental study of water adsorption on Ru(0001) pre-covered with 0.25 monolayers (ML) of oxygen forming a (2 x 2) structure. Several structures were analyzed by means of Density Functional Theory calculations for which STM simulations were performed and compared with experimental data. Up to 0.25 monolayers the molecules bind to the exposed Ru atoms of the 2 x 2 unit cell via the lone pair orbitals. The molecular plane is almost parallel to the surface with its H atoms pointing towards the chemisorbed O atoms of the 2 x 2 unit cell forming hydrogen bonds. The existence of these additional hydrogen bonds increases the adsorption energy of the water molecule to approximately 616 meV, which is {approx}220 meV more stable than on the clean Ru(0001) surface with a similar configuration. The binding energy shows only a weak dependence on water coverage, with a shallow minimum for a row structure at 0.125 ML. This is consistent with the STM experiments that show a tendency of the molecules to form linear rows at intermediate coverage. Our calculations also suggest the possible formation of water dimers near 0.25 ML.
Date: October 15, 2007
Creator: Cabrera-Sanfelix, P.; Sanchez-Portal, D.; Mugarza, A.; Shimizu,T.K.; Salmeron, M. & Arnau, A.
System: The UNT Digital Library
Simulations of plasma confinement in an antihydrogen trap (open access)

Simulations of plasma confinement in an antihydrogen trap

The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration (W. Bertsche et al., AIP Conf. Proc. 796, 301 (2005)). In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventional Malmberg-Penning trap. These multipole fields must be strong enough to confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of the axial magnetic field. Numerical simulations reported here confirm recent experimental measurements of reduced particle confinement when a quadrupole field is added to a Malmberg-Penning trap. It is shown that, for parameters relevant to various antihydrogen experiments, the use of an octupole field significantly reducesthe positron losses seen with a quadrupole field. A unique method for obtaining a 3-D equilibrium of the positrons in the trap with a collisionless PIC code was developed especially for the study of the antihydrogen trap; however, it is of practical use for other traps as well.
Date: October 15, 2007
Creator: Gomberoff, K.; Fajans, J.; Friedman, A.; Grote, D.; Vay, J. L. & Wurtele, J. S.
System: The UNT Digital Library
Shotgun Metaproteomics of the Human Distal Gut Microbiota (open access)

Shotgun Metaproteomics of the Human Distal Gut Microbiota

The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.
Date: October 15, 2008
Creator: VerBerkmoes, N. C.; Russell, A. L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J. et al.
System: The UNT Digital Library
Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: performance evaluation and role of meteorological forcing (open access)

Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: performance evaluation and role of meteorological forcing

CO{sub 2} and heat fluxes were measured over a six-week period (09/08/2006 to 10/24/2006) by the eddy covariance (EC) technique at the Horseshoe Lake tree kill (HLTK), Mammoth Mountain, CA, a site with complex terrain and high, spatially heterogeneous CO{sub 2} emission rates. EC CO{sub 2} fluxes ranged from 218 to 3500 g m{sup -2} d{sup -1} (mean = 1346 g m{sup -2} d{sup -1}). Using footprint modeling, EC CO{sub 2} fluxes were compared to CO{sub 2} fluxes measured by the chamber method on a grid repeatedly over a 10-day period. Half-hour EC CO{sub 2} fluxes were moderately correlated (R{sup 2} = 0.42) with chamber fluxes, whereas average-daily EC CO{sub 2} fluxes were well correlated (R{sup 2} = 0.70) with chamber measurements. Average daily EC CO{sub 2} fluxes were correlated with both average daily wind speed and atmospheric pressure; relationships were similar to those observed between chamber CO{sub 2} fluxes and the atmospheric parameters over a comparable time period. Energy balance closure was assessed by statistical regression of EC energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R{sup 2} = 0.77 for 1:1 line), the degree of energy balance closure fell …
Date: October 15, 2007
Creator: Lewicki, Jennifer; Lewicki, J. L.; Fischer, M. L. & Hilley, G. E.
System: The UNT Digital Library
Simple Models and Methods for Estimating the UltrasonicReflectivity of Spot Welds (open access)

Simple Models and Methods for Estimating the UltrasonicReflectivity of Spot Welds

This paper describes models and methods for estimating theacoustic reflectivity of the welded interfaces between spot-welded sheetsfrom normal-incidence pulse-echo ultrasound signals. The simple geometryof the problem allows an abstraction that does not resort to complex waveequations. Instead, a reflectivity model predicts the timing andamplitude of the echoes arriving at the probe. This reflectivity model isnested in a signal processing model; recovering reflectivity firstrequires deconvolution to recover discrete impulses from the probesignal, then processing these with the reflectivity model. Reflectivitymaps of spot welds generated with this model show promise for predictingweld quality.
Date: October 15, 2006
Creator: Davis, William B.
System: The UNT Digital Library
Decisive role of the energetics of dissociation products in the adsorption of water on O/Ru(0001) (open access)

Decisive role of the energetics of dissociation products in the adsorption of water on O/Ru(0001)

Using density-functional theory they found that, depending on coverage, coadsorbed oxygen can act both as a promoter and as an inhibitor of the dissociation of water on Ru(0001), the transition between these two behaviors occurring at (0.2 M). The key factor that determines this transition is the adsorption energy of the reaction products, OH in particular. The chemistry of this coadsorbed system is dictated by the effective coordination of the Ru atoms that participate in the bonding of the different species. In particular, they observed that a low coverage of oxygen increases the adsorption energy of the OH fraction on the Ru surface. This surprising extra stabilization of the OH with the coadsorption of oxygen can be understood in the context of the metallic bonding and could well correspond to a general trend for the coadsorption of electronegative species on metallic surfaces.
Date: October 15, 2008
Creator: Cabrera-Sanfelix, Pepa; Arnau, Andres; Mugarza, Aitor; Shimizu, Tomoko K.; Salmeron, Miquel & Sánchez-Portal, Daniel
System: The UNT Digital Library
Realization of a Custom Designed FPGA Based Embedded Controller (open access)

Realization of a Custom Designed FPGA Based Embedded Controller

As part of the Low Level RF (LLRF) upgrade project at Brookhaven National Laboratory's Collider-Accelerator Department (BNL C-AD), we have recently developed and tested a prototype high performance embedded controller. This controller is a custom designed PMC module employing a Xilinx V4FX60 FPGA with a PowerPC405 embedded processor, and a wide variety of on board peripherals (DDR2 SDRAM, FLASH, Ethernet, PCI, multi-gigabit serial transceivers, etc.). The controller is capable of running either an embedded version of LINUX or VxWorks, the standard operating system for RHIC front end computers (FECs). We have successfully demonstrated functionality of this controller as a standard RHIC FEC and tested all on board peripherals. We now have the ability to develop complex, custom digital controllers within the framework of the standard RHIC control system infrastructure. This paper will describe various aspects of this development effort, including the basic hardware, functional capabilities, the development environment, kernel and system integration, and plans for further development.
Date: October 15, 2007
Creator: Severino, F.; Harvey, M.; Hayes, T.; Hoff, L.; Oddo, P. & Smith, K. S.
System: The UNT Digital Library
Space nuclear power requirements for ozone layer modification (open access)

Space nuclear power requirements for ozone layer modification

This work estimates the power requirements for using photochemical processes driven by space nuclear power to counteract the Earth's ozone layer depletion. The total quantity of ozone (O{sub 3}) in the Earth's atmosphere is estimated to be about 4.7 {times} 10{sup 37} molecules. The ozone production and destruction rates in the stratosphere are both on the order of 4.9 {times} 10{sup 31} molecules/s, differing by a small fraction so that the net depletion rate is about 0.16 to 0.26% per year. The delivered optical power requirement for offsetting this depletion is estimated to be on the order of 3 GW. If the power were produced by satellite reactors at 800 km altitude (orbit decay time {approximately} 300 years), some means of efficient power beaming would be needed to deliver the power to stratospheric levels (10--50 km). Ultraviolet radiation at 140--150 nm could have higher absorption rates in O{sub 2} (leading to production of atomic oxygen, which can combine with O{sub 2} to form O{sub 3}) than in ozone (leading to photodissociation of O{sub 3}). Potential radiation sources include H{sub 2} lasers and direct nuclear pumping of ultraviolet fluorescers. 5 refs.
Date: October 15, 1991
Creator: Dolan, T.J.
System: The UNT Digital Library
Predictions for nuclear properties along the r-process path (open access)

Predictions for nuclear properties along the r-process path

The uniformity of different nuclear regions as a function of the number of valence protons and neutrons (counted from the nearest closed shell) has been exploited for the parameterization of calculations for nuclei far from stability within the IBA model. Predictions are given for low lying levels, E2 transition rates, and binding energies for nuclei in the r-process path in the A = 150 and A = 190 mass regions. 6 refs., 6 figs.
Date: October 15, 1987
Creator: Aprahamian, A.
System: The UNT Digital Library
On the spurious pressures generated by certain GFEM solutions of the incompressible Navier-Stokes equations (open access)

On the spurious pressures generated by certain GFEM solutions of the incompressible Navier-Stokes equations

The spurious pressures and acceptable velocities generated when using certain combinations of velocity and pressure approximations in a Galerkin finite element discretization of the primitive variable form of the incompressible Navier-Stokes equations are analyzed both theoretically and numerically for grids composed of quadrilateral finite elements. Schemes for obtaining usable pressure fields from the spurious numerical results are presented for certain cases.
Date: October 15, 1979
Creator: Sani, R. L.; Gresho, P. M. & Lee, R. L.
System: The UNT Digital Library
Picosecond x-ray measurements from 100 eV to 30 keV (open access)

Picosecond x-ray measurements from 100 eV to 30 keV

Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices.
Date: October 15, 1980
Creator: Attwood, D.T.; Kauffman, R.L. & Stradling, G.L.
System: The UNT Digital Library
Fermilab Physics Program for the 1990's (open access)

Fermilab Physics Program for the 1990's

Following a brief introduction to Fermilab facilities and a review of the accelerator status and plans, the physics potential for the Fermilab III upgrade program is discussed for both the fixed target and collider modes.
Date: October 15, 1990
Creator: Stanfield, K. C.
System: The UNT Digital Library
Numerical determination of injector design for high beam quality (open access)

Numerical determination of injector design for high beam quality

The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile.
Date: October 15, 1985
Creator: Boyd, J.K.
System: The UNT Digital Library
Optimum ranges for x-ray thickness measurements (open access)

Optimum ranges for x-ray thickness measurements

Film thicknesses can be measured by two x-ray methods: x-ray absorption (gauging or radiography) and x-ray fluorescence. Optimization of both methods is discussed.
Date: October 15, 1985
Creator: Ryon, R.W.
System: The UNT Digital Library