Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in …
Date: April 19, 2007
Creator: Scheibe, Tim; Tartakovsky, Alexandre; Wood, Brian & Seymour, Joe
System: The UNT Digital Library

Kinetics of U(VI) reduction control kinetics of U(IV) reoxidation

For the in situ reductive immobilization of U to be an acceptable strategy for the removal of that element from groundwater, the long-term stability of U(IV) must be determined. Rates of biotransformation of Fe species influence the mineralogy of the resulting products (Fredrickson et al., 2003; Senko et al., 2005), and we hypothesize that the rate of U(VI) reduction influences the mineralogy of resultant U(IV) precipitates. We hypothesize that slower rates of U(VI) reduction will yield U(IV) phases that are more resistant to reoxidation, and will therefore be more stable upon cessation of electron donor addition. U(IV) phases formed by relatively slow reduction may be more crystalline or larger in comparison to their relatively rapidly-formed counterparts (Figure 1), thus limiting the reactivity of slowly-formed U(IV) phases toward various oxidants. The physical location of U(IV) precipitates relative to bacterial cells may also limit the reactivity of biogenic U(IV) phases. In this situation, we expect that precipitation of U(IV) within the bacterial cell may protect U(IV) from reoxidation by limiting physical contact between U(IV) and oxidants (Figure 1). We assessed the effect of U(VI) reduction rate on the subsequent reoxidation of biogenic U(IV) and are currently conducting column scale studies to determine …
Date: April 5, 2006
Creator: Senko, J.M.; Minyard, M.L.; Dempsey, B.A.; Roden, E.E.; Yeh, G.-T. & Burgos, W.D.
System: The UNT Digital Library

The new D0 layer 0 silicaon detector

None
Date: June 1, 2006
Creator: Strom, Derek A.
System: The UNT Digital Library

Go For Breakfast, Go For Gold

A poster advertising the school breakfast week Olympics, March 5-9th.
Date: [2007-01-04..2014-11-16]
Creator: Texas. Department of Agriculture.
System: The Portal to Texas History

My Plate. My Tray. My Health.

This document provides information on how to divide ones plate or tray healthily.
Date: [2007-01..2014-11]
Creator: Texas. Department of Agriculture.
System: The Portal to Texas History

A Dad...Teaches, Supports, Plays, Listens, Loves

Bilingual poster depicting a father hugging a child and reading "A Dad...Teaches, Supports, Plays, Listens, Loves," and "Thank you to the unsung heroes of children's lives...loving supportive parents." One side is in English and the other side is in Spanish.
Date: [2002..2015]
Creator: Texas. Department of Health.
System: The Portal to Texas History

Texas State Park Rules and Regulations

Poster listing Texas Sate Park's rules and regulations.
Date: September 2009
Creator: Texas. Parks and Wildlife Department.
System: The Portal to Texas History

Mesoscale Biotransformation of Uranium: Influences of Organic Carbon Supply Rates and Sediment Oxides

Remediation and long-term stewardship of uranium-contaminated sediments and groundwaters are critical problems at a number of DOE facilities and mining sites. Some remediation strategies based on in-situ bioreduction of U are potentially effective in significantly decreasing U concentrations in groundwaters. However, a number of basic processes require understanding in order to identify conditions more conducive to success of reduction-based U stabilization. Our current research targets several of these issues including: (1) effects of organic carbon (OC) forms and supply rates on stability of bioreduced U, (2) the roles of Fe(III)- and Mn(III,IV)-oxides as potential U oxidants in sediments, and (3) microbial community changes in relation to U redox changes. These issues were identified in our previous study on U bioreduction and reoxidation (Wan et al., 2005). Most of our studies are being conducted on historically U-contaminated sediments from Area 2 of the Field Research Center, Oak Ridge National Laboratory, in flow-through columns simulating in-situ field remediation.
Date: April 19, 2007
Creator: Tokunaga, Tetsu; Wan, Jiamin; Kim, Yongman; Daly, Rebecca; Brodie, Eoin; Firestone, Mary et al.
System: The UNT Digital Library

Crystal Silicon Heterojunction Solar Cells by Hot-wire CVD (Presentation)

None
Date: May 1, 2008
Creator: Wang, Q.; Page, M. R.; Iwaniczko, E.; Xu, Y. Q.; Roybal, L.; Bauer, R. et al.
System: The UNT Digital Library

Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

None
Date: April 19, 2007
Creator: Werth, Charles; Valocchi, Albert; Yoon, Hongkyu; Nellis, Scott; Prescod, Garvin & Oostrom, Mart
System: The UNT Digital Library

Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and Their Influence on Reactive Transport

None
Date: April 19, 2007
Creator: Zachara, J. M.; Liu, C.; Qafoku, N.; McKinley, J. P.; Davis, J. A.; Stoliker, D. et al.
System: The UNT Digital Library

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume

None
Date: April 19, 2007
Creator: Zachara, J.; Freshley, M.; DePaolo, D.; Fredrickson, J.; Haggerty, R.; Kent, D. et al.
System: The UNT Digital Library