Comparison of Predictive Models for PV Module Performance (Presentation)

This paper examines three models used to estimate the maximum power (P{sub m}) of PV modules when the irradiance and PV cell temperature are known: (1) the power temperature coefficient model, (2) the PVFORM model, and (3) the bilinear interpolation model. A variation of the power temperature coefficient model is also presented that improved model accuracy. For modeling values of P{sub m}, an 'effective' plane-of-array (POA) irradiance (E{sub e}) and the PV cell temperature (T) are used as model inputs. Using E{sub e} essentially removes the effects of variations in solar spectrum and reflectance losses, and permits the influence of irradiance and temperature on model performance for P{sub m} to be more easily studied. Eq. 1 is used to determine E{sub e} from T and the PV module's measured short-circuit current (I{sub sc}). Zero subscripts denote performance at Standard Reporting Conditions (SRC).
Date: May 1, 2008
Creator: Marion, B.
System: The UNT Digital Library

Crystal Silicon Heterojunction Solar Cells by Hot-wire CVD (Presentation)

None
Date: May 1, 2008
Creator: Wang, Q.; Page, M. R.; Iwaniczko, E.; Xu, Y. Q.; Roybal, L.; Bauer, R. et al.
System: The UNT Digital Library

Photoconductive Decay Lifetime and Suns-Voc Diagnostics of Efficient Heterojunction Solar Cells

None
Date: May 1, 2008
Creator: Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Bauer, R.; Yuan, H.-C. et al.
System: The UNT Digital Library