Investigation of the carbon dioxide sorption capacity and structural deformation of coal

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal …
Date: January 1, 2010
Creator: Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav & Harbert, William
System: The UNT Digital Library

Hydrogel Tracer Beads: The Development, Modification, and Testing of an Innovative Tracer for Better Understanding LNAPL Transport in Karst Aquifers

The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.
Date: January 1, 2012
Creator: Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper
System: The UNT Digital Library

New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.
Date: January 1, 2014
Creator: Roberts, J. O.
System: The UNT Digital Library

U.S. Department of Energy Summary of 2012 Occupational Radiation Exposure

This poster provides graphic data for 2010-2012 of collective total effective dose (TED) by site, and graphical data for 2008-2012 of components of TED, average measurable TED, percentage of collective TED above dose, collective dose and average measurable dose (1974-2012), and numbers of individuals in the DOE workforce, total number of records of monitored individuals, and number of individuals with a measurable dose. Also, there is a table of the number of individuals receiving >2 rems administrative control level and >5 rems annual limit for 2008-2012.
Date: February 2, 2012
Creator: unknown
System: The UNT Digital Library

Photon and neutron productions studies in the MIPP experiment

None
Date: May 1, 2006
Creator: Nigmanov, Turgun
System: The UNT Digital Library

The new D0 layer 0 silicaon detector

None
Date: June 1, 2006
Creator: Strom, Derek A.
System: The UNT Digital Library

Testing the Concept of Drift Shadow Using X-Ray Absorption Imaging

None
Date: November 22, 2005
Creator: Forsberg, A. A.; Altman, S. J.; Peplinski, W. J. & Ho, C. K.
System: The UNT Digital Library

Center for Environmental Kinetics Analysis

Over the past two decades, numerous studies have produced high quality information on the rates at which bacteria can reduce metal oxides. The prototypical study--such as the one depicted to the right--focuses on only a few of the myriad variables affecting the rate. This approach allows for effective dissection of the mechanisms underlying DMRB activity, but, it also produces disjoint information that must be synthesized if we hope to predict the behavior of bacteria at the systems level.
Date: April 5, 2006
Creator: Bandstra, Joel Z.; Burgos, William D. & Peyton, Brent M.
System: The UNT Digital Library

Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and …
Date: April 19, 2007
Creator: Martinez, Robert J.; Beazley, Melanie J.; Webb, Samuel M.; Taillefert, Martial & Sobecky, Patricia A.
System: The UNT Digital Library