Resource Type

54 Matching Results

Results open in a new window/tab.

Integrating Controlled Vocabularies into Cultural Heritage Digital Collections: The Portal to Texas History Experience [Poster]

Poster presented at the 2007 ASIS&T Annual Conference. This poster describes the University of North Texas (UNT) Libraries' digital libraries implementations experience. It discusses various scenarios and strategies for integrating controlled vocabularies in the uncontrolled digital library world.
Date: 2007
Creator: Alemneh, Daniel Gelaw; Phillips, Mark Edward & Belden, Dreanna
System: The UNT Digital Library

Hereditary Factors in the Development of Myopia: Work in Progress

Poster presentation for the 2007 University Scholars Day at the University of North Texas discussing research on hereditary factors in the development of myopia.
Date: March 29, 2007
Creator: Jordao, Helena & Eve, Susan Brown
System: The UNT Digital Library

A DSpace Foundation for a Teaching and Research Commons: The Metadata Education and Research Information Commons

Poster presented at the 2007 International Conference on Open Repositories. This poster discusses the Metadata Education and Research Information Commons (MERIC). MERIC originated from an action plan of the Library of Congress and addresses the need to prepare future information professionals to organize and provide access to digital resources.
Date: January 2007
Creator: Hsieh-Yee, Ingrid; Moen, William E.; Vellucci, Sherry L. & Benton, Bryce
System: The UNT Digital Library

My Plate. My Tray. My Health.

This document provides information on how to divide ones plate or tray healthily.
Date: [2007-01..2014-11]
Creator: Texas. Department of Agriculture.
System: The Portal to Texas History

[Poster: The Big Ball's in Cowtown]

Poster containing photographs of people and events held at Cowtown Coliseum from 1907 through 2007 with timeline notes. It includes a large photo of Elvis on the left side of the poster from his 1956 performance and lyrics for a song called "Big Ball's in Cowtown" in the upper-right corner.
Date: 2007~
Creator: unknown
System: The Portal to Texas History

[Poster: The Early Years]

Poster containing photographs of people and events held at Cowtown Coliseum from 1907 through 1997 with timeline notes. It includes a photographs of the coliseum construction and different views of the building along the bottom.
Date: 2007~
Creator: unknown
System: The Portal to Texas History

Go For Breakfast, Go For Gold

A poster advertising the school breakfast week Olympics, March 5-9th.
Date: [2007-01-04..2014-11-16]
Creator: Texas. Department of Agriculture.
System: The Portal to Texas History

Self-Isolation or Distancing: Gender Differences in HIV-Related Coping and Depression

This poster examines the relationships between gender differentiated HIV-related coping strategies and depression.
Date: March 21, 2007
Creator: Martin, Luci A. & Vosvick, Mark A.
System: The UNT Digital Library

Correlates of Knowledge/Attitudes towards Lesbian, Gay, and Bisexual Individuals

This poster examines relationships between depression, guilt, and lesbian, gay, and bisexual attitudes/knowledge.
Date: August 17, 2007
Creator: Volpone, Sabrina; Vosvick, Mark A.; Chng, Chwee-Lye & Smith, Nathan Grant
System: The UNT Digital Library

Adherence and the Medical Management of HIV/AIDS: Stress and Coping

This poster investigates the association of medical adherence to perceived stress, maladaptive coping behaviors, and medical variables in a sample of HIV+ adults.
Date: November 5, 2007
Creator: Hua, William Q.; Vosvick, Mark A. & Chng, Chwee-Lye
System: The UNT Digital Library

Optical Durability of Candidate Solar Reflector Materials

None
Date: March 1, 2007
Creator: Kennedy, C.; Terwilliger, K. & Warrick, A.
System: The UNT Digital Library

Parabolic Trough Receiver Heat Loss Testing (Poster)

Parabolic trough receivers, or heat collection elements (HCEs), absorb sunlight focused by the mirrors and transfer that thermal energy to a fluid flowing within them. Thje absorbing tube of these receivers typically operates around 400 C (752 F). HCE manufacturers prevent thermal loss from the absorbing tube to the environment by using sputtered selective Cermet coatings on the absorber and by surrounding the absorber with a glass-enclosed evacuated annulus. This work quantifies the heat loss of the Solel UVAC2 and Schott PTR70 HCEs. At 400 C, the HCEs perform similarly, losing about 400 W/m of HCE length. To put this in perspective, the incident beam radiation on a 5 m mirror aperture is about 4500 W/m, with about 75% of that energy ({approx} 3400 W/m) reaching the absorber surface. Of the 3400 W/m on the absorber, about 3000 W/m is absorbed into the working fluid while 400 W/m is lost to the environment.
Date: March 1, 2007
Creator: Price, H.; Netter, J.; Bingham, C.; Kutscher, C.; Burkholder, F. & Brandemuehl, M.
System: The UNT Digital Library

Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and Their Influence on Reactive Transport

None
Date: April 19, 2007
Creator: Zachara, J. M.; Liu, C.; Qafoku, N.; McKinley, J. P.; Davis, J. A.; Stoliker, D. et al.
System: The UNT Digital Library

Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

None
Date: April 19, 2007
Creator: Kanel, S. R.; Loganathan, V. A.; Jeppu, G.; Kumar, A.; Srinivasan, V.; Radu, T. et al.
System: The UNT Digital Library

Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in …
Date: April 19, 2007
Creator: Scheibe, Tim; Tartakovsky, Alexandre; Wood, Brian & Seymour, Joe
System: The UNT Digital Library

Applying EMSL Capabilities to Biogeochemistry and Environmental Research

The Environmental Molecular Sciences laboratory (EMSL) is a national scientific user facility operated by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. Located in Richland, Washington, EMSL offers researchers a comprehensive array of cutting-edge capabilities unmatched anywhere else in the world and access to the expertise of over 300 resident users--all at one location. EMSL's resources are available on a peer-reviewed proposal basis and are offered at no cost if research results are shared in the open literature. Researchers are encouraged to submit a proposal centered around one of EMSL's four Science Themes, which represent growing areas of research: (1) Geochemistry/Biogeochemistry and Subsurface Science; (2) Atmospheric Aerosol Chemistry; (3) Biological Interactions and Dynamics; and (4) Science of Interfacial Phenomena. To learn more about EMSL, visit www.emsl.pnl.gov.
Date: April 19, 2007
Creator: Felmy, Andy
System: The UNT Digital Library

Synthesis of Goethite-Coated Sand and Analysis of its Interactions with Uranium

None
Date: April 19, 2007
Creator: Loganathan, Vijay A.; Kanel, Sushil R.; Barnett, Mark O. & Clement, and T. Prabhakar
System: The UNT Digital Library

Changes in Microbial Community Structure During Biostimulation for Uranium Reduction at Different Levels of Resolution

This poster describes the Changes in Microbial Community Structure During Biostimulation for Uranium Reduction at Different Levels of Resolution
Date: April 19, 2007
Creator: Hwang, C.; Wu, W.-M.; Gentry, T.J.; Corbin, G.; Carley, J.; Carroll, S.L. et al.
System: The UNT Digital Library

Coupled Processes Influencing the Transport of Uranium over Multiple Scales

None
Date: April 19, 2007
Creator: Mayes, Melanie A.; Tang, Guoping; Parker, Jack C.; Perfect, Ed & van den Berg, Elmer
System: The UNT Digital Library

Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

None
Date: April 19, 2007
Creator: Werth, Charles; Valocchi, Albert; Yoon, Hongkyu; Nellis, Scott; Prescod, Garvin & Oostrom, Mart
System: The UNT Digital Library

Biogeochemical Mechanisms Controlling Reduced Radionuclide Particle Properties and Stability

None
Date: April 19, 2007
Creator: Marshall, M.J.; Beliaev, A.S.; Fredrickson, J.K. & Zachara, J.M
System: The UNT Digital Library

The Center for Environmental Kinetics Analysis: an NSF- and DOE-funded Environmental Molecular Science Institute (EMSI) at Penn State

Physicochemical and microbiological processes taking place at environmental interfaces influence natural processes as well as the transport and fate of environmental contaminants, the remediation of toxic chemicals, and the sequestration of anthropogenic CO2. A team of scientists and engineers has been assembled to develop and apply new experimental and computational techniques to expand our knowledge of environmental kinetics. We are also training a cohort of talented and diverse students to work on these complex problems at multiple length scales and to compile and synthesize the kinetic data. Development of the human resources capable of translating molecular-scale information into parameters that are applicable in real world, field-scale problems of environmental kinetics is a major and relatively unique objective of the Institute's efforts. The EMSI team is a partnership among 10 faculty at The Pennsylvania State University (funded by the National Science Foundation Divisions of Chemistry and Earth Sciences), one faculty member at Juniata College, one faculty member at the University of Florida, and four researchers drawn from Los Alamos National Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory (funded by the Department of Energy Division of Environmental Remediation Sciences). Interactions among the applied and academic scientists drives research approaches …
Date: April 19, 2007
Creator: Brantley, S. L.; Burgos, William D.; Dempsey, Brian A.; Heaney, Peter J.; Kubicki, James D.; Lichtner, Peter C. et al.
System: The UNT Digital Library

Thermodynamic network model for predicting effects of substrate addition and other perturbations on subsurface microbial communities

The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on microbial growth, community composition and system geochemistry. The hypothesis is that a thermodynamic analysis of the energy-yielding growth reactions performed by defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change.
Date: April 19, 2007
Creator: Istok, Jack; Park, Melora; McKinley, James; Liu, Chongxuan; Krumholz, Lee; Spain, Anne et al.
System: The UNT Digital Library

Isotopic Tracers for Biogeochemical Processes and Contaminant Transport: Hanford, Washington

Our goal is to use isotopic measurements to understand how contaminants are introduced to and stored in the vadose zone, and what processes control migration from the vadose zone to groundwater and then to surface water. We have been using the Hanford Site in south-central Washington as our field laboratory, and our investigations are often stimulated by observations made as part of the groundwater monitoring program and vadose zone characterization activities. Understanding the transport of contaminants at Hanford is difficult due to the presence of multiple potential sources within small areas, the long history of activities, the range of disposal methods, and the continuing evolution of the hydrological system. Observations often do not conform to simple models, and cannot be adequately understood with standard characterization approaches, even though the characterization activities are quite extensive. One of our objectives is to test the value of adding isotopic techniques to the characterization program, which has the immediate potential benefit of addressing specific remediation issues, but more importantly, it allows us to study fundamental processes at the scale and in the medium where they need to be understood. Here we focus on two recent studies at the waste management area (WMA) T-TX-TY, which …
Date: April 19, 2007
Creator: DePaolo, Donald J.; Christensen, John N.; Conrad, Mark E. & Dresel, and P. Evan
System: The UNT Digital Library