The Pettis Integral and Operator Theory

Access: Use of this item is restricted to the UNT Community
Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used …
Date: August 2001
Creator: Huettenmueller, Rhonda
System: The UNT Digital Library

Topological uniqueness results for the special linear and other classical Lie Algebras.

Access: Use of this item is restricted to the UNT Community
Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, …
Date: December 2001
Creator: Rees, Michael K.
System: The UNT Digital Library

Quantization Dimension for Probability Definitions

Access: Use of this item is restricted to the UNT Community
The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would …
Date: December 2001
Creator: Lindsay, Larry J.
System: The UNT Digital Library

Dimension spectrum and graph directed Markov systems.

Access: Use of this item is restricted to the UNT Community
In this dissertation we study graph directed Markov systems (GDMS) and limit sets associated with these systems. Given a GDMS S, by the Hausdorff dimension spectrum of S we mean the set of all positive real numbers which are the Hausdorff dimension of the limit set generated by a subsystem of S. We say that S has full Hausdorff dimension spectrum (full HD spectrum), if the dimension spectrum is the interval [0, h], where h is the Hausdorff dimension of the limit set of S. We give necessary conditions for a finitely primitive conformal GDMS to have full HD spectrum. A GDMS is said to be regular if the Hausdorff dimension of its limit set is also the zero of the topological pressure function. We show that every number in the Hausdorff dimension spectrum is the Hausdorff dimension of a regular subsystem. In the particular case of a conformal iterated function system we show that the Hausdorff dimension spectrum is compact. We introduce several new systems: the nearest integer GDMS, the Gauss-like continued fraction system, and the Renyi-like continued fraction system. We prove that these systems have full HD spectrum. A special attention is given to the backward continued fraction …
Date: May 2006
Creator: Ghenciu, Eugen Andrei
System: The UNT Digital Library

Exhaustivity, continuity, and strong additivity in topological Riesz spaces.

Access: Use of this item is restricted to the UNT Community
In this paper, exhaustivity, continuity, and strong additivity are studied in the setting of topological Riesz spaces. Of particular interest is the link between strong additivity and exhaustive elements of Dedekind s-complete Banach lattices. There is a strong connection between the Diestel-Faires Theorem and the Meyer-Nieberg Lemma in this setting. Also, embedding properties of Banach lattices are linked to the notion of strong additivity. The Meyer-Nieberg Lemma is extended to the setting of topological Riesz spaces and uniform absolute continuity and uniformly exhaustive elements are studied in this setting. Counterexamples are provided to show that the Vitali-Hahn-Saks Theorem and the Brooks-Jewett Theorem cannot be extended to submeasures or to the setting of Banach lattices.
Date: May 2004
Creator: Muller, Kimberly O.
System: The UNT Digital Library

Spaces of Compact Operators

Access: Use of this item is restricted to the UNT Community
In this dissertation we study the structure of spaces of operators, especially the space of all compact operators between two Banach spaces X and Y. Work by Kalton, Emmanuele, Bator and Lewis on the space of compact and weakly compact operators motivates much of this paper. Let L(X,Y) be the Banach space of all bounded linear operators between Banach spaces X and Y, K(X,Y) be the space of all compact operators, and W(X,Y) be the space of all weakly compact operators. We study problems related to the complementability of different operator ideals (the Banach space of all compact, weakly compact, completely continuous, resp. unconditionally converging) operators in the space of all bounded linear operators. The structure of Dunford-Pettis sets, strong Dunford-Pettis sets, and certain spaces of operators is studied in the context of the injective and projective tensor products of Banach spaces. Bibasic sequences are used to study relative norm compactness of strong Dunford-Pettis sets. Next, we use Dunford-Pettis sets to give sufficient conditions for K(X,Y) to contain c0.
Date: May 2004
Creator: Ghenciu, Ioana
System: The UNT Digital Library

Hamiltonian cycles in subset and subspace graphs.

Access: Use of this item is restricted to the UNT Community
In this dissertation we study the Hamiltonicity and the uniform-Hamiltonicity of subset graphs, subspace graphs, and their associated bipartite graphs. In 1995 paper "The Subset-Subspace Analogy," Kung states the subspace version of a conjecture. The study of this problem led to a more general class of graphs. Inspired by Clark and Ismail's work in the 1996 paper "Binomial and Q-Binomial Coefficient Inequalities Related to the Hamiltonicity of the Kneser Graphs and their Q-Analogues," we defined subset graphs, subspace graphs, and their associated bipartite graphs. The main emphasis of this dissertation is to describe those graphs and study their Hamiltonicity. The results on subset graphs are presented in Chapter 3, on subset bipartite graphs in Chapter 4, and on subspace graphs and subspace bipartite graphs in Chapter 5. We conclude the dissertation by suggesting some generalizations of our results concerning the panciclicity of the graphs.
Date: December 2004
Creator: Ghenciu, Petre Ion
System: The UNT Digital Library

Hyperbolic Monge-Ampère Equation

Access: Use of this item is restricted to the UNT Community
In this paper we use the Sobolev steepest descent method introduced by John W. Neuberger to solve the hyperbolic Monge-Ampère equation. First, we use the discrete Sobolev steepest descent method to find numerical solutions; we use several initial guesses, and explore the effect of some imposed boundary conditions on the solutions. Next, we prove convergence of the continuous Sobolev steepest descent to show local existence of solutions to the hyperbolic Monge-Ampère equation. Finally, we prove some results on the Sobolev gradients that mainly arise from general nonlinear differential equations.
Date: August 2006
Creator: Howard, Tamani M.
System: The UNT Digital Library

Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups

Access: Use of this item is restricted to the UNT Community
The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to representations of Iwahori-Hecke algebras introduced by Kazhdan and Lusztig in 1979. In this dissertation, I discuss a generalization of the Iwahori-Hecke algebra of the symmetric group that is instead based on the complex reflection group G(r,1,n). Using the analogues of Kazhdan and Lusztig's R-polynomials, I show that this algebra determines a partial order on G(r,1,n) that generalizes the Chevalley-Bruhat order on the symmetric group. I also consider possible analogues of Kazhdan-Lusztig polynomials.
Date: May 2006
Creator: Alhaddad, Shemsi I.
System: The UNT Digital Library

A Novel Two-Stage Adaptive Method for Estimating Large Covariance and Precision Matrices

Access: Use of this item is restricted to the UNT Community
Estimating large covariance and precision (inverse covariance) matrices has become increasingly important in high dimensional statistics because of its wide applications. The estimation problem is challenging not only theoretically due to the constraint of its positive definiteness, but also computationally because of the curse of dimensionality. Many types of estimators have been proposed such as thresholding under the sparsity assumption of the target matrix, banding and tapering the sample covariance matrix. However, these estimators are not always guaranteed to be positive-definite, especially, for finite samples, and the sparsity assumption is rather restrictive. We propose a novel two-stage adaptive method based on the Cholesky decomposition of a general covariance matrix. By banding the precision matrix in the first stage and adapting the estimates to the second stage estimation, we develop a computationally efficient and statistically accurate method for estimating high dimensional precision matrices. We demonstrate the finite-sample performance of the proposed method by simulations from autoregressive, moving average, and long-range dependent processes. We illustrate its wide applicability by analyzing financial data such S&P 500 index and IBM stock returns, and electric power consumption of individual households. The theoretical properties of the proposed method are also investigated within a large class of …
Date: August 2019
Creator: Rajendran, Rajanikanth
System: The UNT Digital Library

A Global Spatial Model for Loop Pattern Fingerprints and Its Spectral Analysis

Access: Use of this item is restricted to the UNT Community
The use of fingerprints for personal identification has been around for thousands of years (first established in ancient China and India). Fingerprint identification is based on two basic premises that the fingerprint is unique to an individual and the basic characteristics such as ridge pattern do not change over time. Despite extensive research, there are still mathematical challenges in characterization of fingerprints, matching and compression. We develop a new mathematical model in the spatial domain for globally modeling loop pattern fingerprints. Although it is based on the well-known AM-FM (amplitude modulation and frequency modulation) image representation, the model is constructed by a global mathematical function for the continuous phase and it provides a flexible parametric model for loop pattern fingerprints. In sharp contrast to the existing methods, we estimate spatial parameters from the spectral domain by combining the exact values of frequencies with their orientations perpendicular to the fingerprint ridge flow. In addition, to compress fingerprint images and test background Gaussian white noise, we propose a new method based on periodogram spacings. We obtain the joint pdf of these m-dependent random variables at Fourier frequencies and derive the asymptotic distribution of the test statistic.
Date: August 2019
Creator: Wu, Di
System: The UNT Digital Library