A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities (open access)

A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1
Date: May 2001
Creator: May, Russell J.
System: The UNT Digital Library
Level Curves of the Angle Function of a Positive Definite Symmetric Matrix (open access)

Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.
Date: December 2009
Creator: Bajracharya, Neeraj
System: The UNT Digital Library
Hyperspace Topologies (open access)

Hyperspace Topologies

In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.
Date: August 2001
Creator: Freeman, Jeannette Broad
System: The UNT Digital Library
Dimensions in Random Constructions. (open access)

Dimensions in Random Constructions.

We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.
Date: May 2002
Creator: Berlinkov, Artemi
System: The UNT Digital Library
Around the Fibonacci Numeration System (open access)

Around the Fibonacci Numeration System

Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.
Date: May 2007
Creator: Edson, Marcia Ruth
System: The UNT Digital Library
Borel Determinacy and Metamathematics (open access)

Borel Determinacy and Metamathematics

Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.
Date: December 2001
Creator: Bryant, Ross
System: The UNT Digital Library
Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis (open access)

Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.
Date: May 2007
Creator: Brooks, Evan
System: The UNT Digital Library
Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions (open access)

Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.
Date: December 2002
Creator: Valdes, LeRoy I.
System: The UNT Digital Library
Understanding Ancient Math Through Kepler: A Few Geometric Ideas from The Harmony of the World (open access)

Understanding Ancient Math Through Kepler: A Few Geometric Ideas from The Harmony of the World

Euclid's geometry is well-known for its theorems concerning triangles and circles. Less popular are the contents of the tenth book, in which geometry is a means to study quantity in general. Commensurability and rational quantities are first principles, and from them are derived at least eight species of irrationals. A recently republished work by Johannes Kepler contains examples using polygons to illustrate these species. In addition, figures having these quantities in their construction form solid shapes (polyhedra) having origins though Platonic philosophy and Archimedean works. Kepler gives two additional polyhedra, and a simple means for constructing the “divine” proportion is given.
Date: August 2002
Creator: Arthur, Christopher
System: The UNT Digital Library
Examples and Applications of Infinite Iterated Function Systems (open access)

Examples and Applications of Infinite Iterated Function Systems

The aim of this work is the study of infinite conformal iterated function systems. More specifically, we investigate some properties of a limit set J associated to such system, its Hausdorff and packing measure and Hausdorff dimension. We provide necessary and sufficient conditions for such systems to be bi-Lipschitz equivalent. We use the concept of scaling functions to obtain some result about 1-dimensional systems. We discuss particular examples of infinite iterated function systems derived from complex continued fraction expansions with restricted entries. Each system is obtained from an infinite number of contractions. We show that under certain conditions the limit sets of such systems possess zero Hausdorff measure and positive finite packing measure. We include an algorithm for an approximation of the Hausdorff dimension of limit sets. One numerical result is presented. In this thesis we also explore the concept of positively recurrent function. We use iterated function systems to construct a natural, wide class of such functions that have strong ergodic properties.
Date: August 2000
Creator: Hanus, Pawel Grzegorz
System: The UNT Digital Library
Maximum-Sized Matroids with no Minors Isomorphic to U2,5, F7, F7¯, OR P7 (open access)

Maximum-Sized Matroids with no Minors Isomorphic to U2,5, F7, F7¯, OR P7

Let M be the class of simple matroids which do not contain the 5-point line U2,5 , the Fano plane F7 , the non-Fano plane F7- , or the matroid P7 , as minors. Let h(n) be the maximum number of points in a rank-n matroid in M. We show that h(2)=4, h(3)=7, and h(n)=n(n+1)/2 for n>3, and we also find all the maximum-sized matroids for each rank.
Date: May 2000
Creator: Mecay, Stefan Terence
System: The UNT Digital Library
Infinite Planar Graphs (open access)

Infinite Planar Graphs

How many equivalence classes of geodesic rays does a graph contain? How many bounded automorphisms does a planar graph have? Neimayer and Watkins studied these two questions and answered them for a certain class of graphs. Using the concept of excess of a vertex, the class of graphs that Neimayer and Watkins studied are extended to include graphs with positive excess at each vertex. The results of this paper show that there are an uncountable number of geodesic fibers for graphs in this extended class and that for any graph in this extended class the only bounded automorphism is the identity automorphism.
Date: May 2000
Creator: Aurand, Eric William
System: The UNT Digital Library
The Global Structure of Iterated Function Systems (open access)

The Global Structure of Iterated Function Systems

I study sets of attractors and non-attractors of finite iterated function systems. I provide examples of compact sets which are attractors of iterated function systems as well as compact sets which are not attractors of any iterated function system. I show that the set of all attractors is a dense Fs set and the space of all non-attractors is a dense Gd set it the space of all non-empty compact subsets of a space X. I also investigate the small trans-finite inductive dimension of the space of all attractors of iterated function systems generated by similarity maps on [0,1].
Date: May 2009
Creator: Snyder, Jason Edward
System: The UNT Digital Library
Urysohn ultrametric spaces and isometry groups. (open access)

Urysohn ultrametric spaces and isometry groups.

In this dissertation we study a special sub-collection of Polish metric spaces: complete separable ultrametric spaces. Polish metric spaces have been studied for quite a long while, and a lot of results have been obtained. Motivated by some of earlier research, we work on the following two main parts in this dissertation. In the first part, we show the existence of Urysohn Polish R-ultrametric spaces, for an arbitrary countable set R of non-negative numbers, including 0. Then we give point-by-point construction of a countable R-ultra-Urysohn space. We also obtain a complete characterization for the set R which corresponding to a R-Urysohn metric space. From this characterization we conclude that there exist R-Urysohn spaces for a wide family of countable R. Moreover, we determine the complexity of the classification of all Polish ultrametric spaces. In the second part, we investigate the isometry groups of Polish ultrametric spaces. We prove that isometry group of an Urysohn Polish R-ultrametric space is universal among isometry groups of Polish R-ultrametric spaces. We completely characterize the isometry groups of finite ultrametric spaces and the isometry groups of countable compact ultrametric spaces. Moreover, we give some necessary conditions for finite groups to be isomorphic to some isometry …
Date: May 2009
Creator: Shao, Chuang
System: The UNT Digital Library
Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN (open access)

Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN

We establish the existence of radial solutions to the p-Laplacian equation ∆p u + f(u)=0 in RN, where f behaves like |u|q-1 u when u is large and f(u) < 0 for small positive u. We show that for each nonnegative integer n, there is a localized solution u which has exactly n zeros. Also, we look for radial solutions of a superlinear Dirichlet problem in a ball. We show that for each nonnegative integer n, there is a solution u which has exactly n zeros. Here we give an alternate proof to that which was given by Castro and Kurepa.
Date: May 2008
Creator: Pudipeddi, Sridevi
System: The UNT Digital Library
A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions (open access)

A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions

We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.
Date: May 2004
Creator: Vlasic, Andrew
System: The UNT Digital Library
Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field (open access)

Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field

It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the centre of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the in&#64258;uence of an externally imposed uniform magnetic &#64257;eld. We &#64257;nd that the only stationary spinning solitary wave solutions have spin parallel or antiparallel to the magnetic &#64257;eld direction.
Date: May 2003
Creator: Hoq, Qazi Enamul
System: The UNT Digital Library
Lyapunov Exponents, Entropy and Dimension (open access)

Lyapunov Exponents, Entropy and Dimension

We consider diffeomorphisms of a compact Riemann Surface. A development of Oseledec's Multiplicative Ergodic Theorem is given, along with a development of measure theoretic entropy and dimension. The main result, due to L.S. Young, is that for certain diffeomorphisms of a surface, there is a beautiful relationship between these three concepts; namely that the entropy equals dimension times expansion.
Date: August 2004
Creator: Williams, Jeremy M.
System: The UNT Digital Library
Thermodynamical Formalism (open access)

Thermodynamical Formalism

Thermodynamical formalism is a relatively recent area of pure mathematics owing a lot to some classical notions of thermodynamics. On this thesis we state and prove some of the main results in the area of thermodynamical formalism. The first chapter is an introduction to ergodic theory. Some of the main theorems are proved and there is also a quite thorough study of the topology that arises in Borel probability measure spaces. In the second chapter we introduce the notions of topological pressure and measure theoretic entropy and we state and prove two very important theorems, Shannon-McMillan-Breiman theorem and the Variational Principle. Distance expanding maps and their connection with the calculation of topological pressure cover the third chapter. The fourth chapter introduces Gibbs states and the very important Perron-Frobenius Operator. The fifth chapter establishes the connection between pressure and geometry. Topological pressure is used in the calculation of Hausdorff dimensions. Finally the sixth chapter introduces the notion of conformal measures.
Date: August 2004
Creator: Chousionis, Vasileios
System: The UNT Digital Library
Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type (open access)

Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

In this dissertation, we study the dynamics, fractal geometry and the topology of the Julia set of functions in the family H which is a set in the class S, the Speiser class of entire transcendental functions which have only finitely many singular values. One can think of a function from H as a generalized expanding function from the cosh family. We shall build a version of thermodynamic formalism for functions in H and we shall show among others, the existence and uniqueness of a conformal measure. Then we prove a Bowen's type formula, i.e. we show that the Hausdorff dimension of the set of returning points, is the unique zero of the pressure function. We shall also study conjugacies in the family H, perturbation of functions in the family and related dynamical properties. We define Perron-Frobenius operators for some functions naturally associated with functions in the family H and then, using fundamental properties of these operators, we shall prove the important result that the Hausdorff dimension of the subset of returning points depends analytically on the parameter taken from a small open subset of the n-dimensional parameter space.
Date: May 2005
Creator: Coiculescu, Ion
System: The UNT Digital Library
Compact Operators and the Schrödinger Equation (open access)

Compact Operators and the Schrödinger Equation

In this thesis I look at the theory of compact operators in a general Hilbert space, as well as the inverse of the Hamiltonian operator in the specific case of L2[a,b]. I show that this inverse is a compact, positive, and bounded linear operator. Also the eigenfunctions of this operator form a basis for the space of continuous functions as a subspace of L2[a,b]. A numerical method is proposed to solve for these eigenfunctions when the Hamiltonian is considered as an operator on Rn. The paper finishes with a discussion of examples of Schrödinger equations and the solutions.
Date: December 2006
Creator: Kazemi, Parimah
System: The UNT Digital Library
A Characterization of Homeomorphic Bernoulli Trial Measures. (open access)

A Characterization of Homeomorphic Bernoulli Trial Measures.

We give conditions which, given two Bernoulli trial measures, determine whether there exists a homeomorphism of Cantor space which sends one measure to the other, answering a question of Oxtoby. We then provide examples, relating these results to the notions of good and refinable measures on Cantor space.
Date: August 2006
Creator: Yingst, Andrew Q.
System: The UNT Digital Library
A Computation of Partial Isomorphism Rank on Ordinal Structures (open access)

A Computation of Partial Isomorphism Rank on Ordinal Structures

We compute the partial isomorphism rank, in the sense Scott and Karp, of a pair of ordinal structures using an Ehrenfeucht-Fraisse game. A complete formula is proven by induction given any two arbitrary ordinals written in Cantor normal form.
Date: August 2006
Creator: Bryant, Ross
System: The UNT Digital Library
Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis (open access)

Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis

The goal of this thesis is to study of the evolution of 3D electrically charged liquid droplets of fluid evolving under the influence of surface tension and electrostatic forces. In the first part of the thesis, an appropriate mathematical model of the problem is introduced and the linear stability analysis is developed by perturbing a sphere with spherical harmonics. In the second part, the numerical solution of the problem is described with the use of the boundary elements method (BEM) on an adaptive mesh of triangular elements. The numerical method is validated by comparison with exact solutions. Finally, various numerical results are presented. These include neck formation in droplets, the evolution of surfaces with holes, singularity formation on droplets with various symmetries and numerical evidence that oblate spheroids are unstable.
Date: May 2006
Creator: Vantzos, Orestis
System: The UNT Digital Library