Resource Type

Overview of the National Atmospheric Release Advisory Center's urban research and development activities (open access)

Overview of the National Atmospheric Release Advisory Center's urban research and development activities

This presentation describes the tools and services provided by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) for modeling the impacts of airborne hazardous materials. NARAC provides atmospheric plume modeling tools and services for chemical, biological, radiological, and nuclear airborne hazards. NARAC can simulate downwind effects from a variety of scenarios, including fires, industrial and transportation accidents, radiation dispersal device explosions, hazardous material spills, sprayers, nuclear power plant accidents, and nuclear detonations. NARAC collaborates on radiological dispersion source terms and effects models with Sandia National Laboratories and the U.S. Nuclear Regulatory Commission. NARAC was designated the interim provider of capabilities for the Department of Homeland Security's Interagency Modeling and Atmospheric Assessment Center by the Homeland Security Council in April 2004. The NARAC suite of software tools include simple stand-alone, local-scale plume modeling tools for end-user's computers, and Web- and Internet-based software to access advanced modeling tools and expert analyses from the national center at LLNL. Initial automated, 3-D predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available from the center in 5-10 minutes. These can be followed immediately by quality-assured, refined analyses by 24 x 7 on-duty or …
Date: September 5, 2007
Creator: Lundquist, J K; Sugiyama, G A & Nasstrom, J
System: The UNT Digital Library
Probing degradation in complex engineering silicones by 1H multiple quantum NMR (open access)

Probing degradation in complex engineering silicones by 1H multiple quantum NMR

Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.
Date: September 5, 2007
Creator: Maxwell, R S; Chinn, S C; Giuliani, J & Herberg, J L
System: The UNT Digital Library
Influence and measurement of mass ablation in ICF implosions (open access)

Influence and measurement of mass ablation in ICF implosions

Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount of residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.
Date: September 5, 2007
Creator: Spears, B. K.; Hicks, D.; Velsko, C.; Stoyer, M.; Robey, H.; Munro, D. et al.
System: The UNT Digital Library
Experimental Studies of ICF Indirect-Drive Be and High Density C Candidate Ablators (open access)

Experimental Studies of ICF Indirect-Drive Be and High Density C Candidate Ablators

To validate our modeling of the macroscopic and microscopic hydrodynamic and equation of state response of these candidate ablators to NIC-relevant x-ray drive, a multi-lab experimental program has been verifying the behavior of these new ablators. First, the pressures for onset and termination of melt for both Be and HDC under single or double shock drive has been measured at the Z and Omega facilities. Second, the level and effect of hard x-ray preheat has been quantified in scaled experiments at the Omega facility. Third, a long planar x-ray drive has been developed to check 2D and 3D perturbation growth at the ablation front upon acceleration. The concept has been extended to study growth at and near the ablator-ice interface upon deceleration. In addition, experimental designs for validating the expected low level of perturbation seeding due to possible residual microstructure after melt during first and second shock transit in Be and HDC have been completed. Results so far suggest both Be and HDC can remain ablator choices and have guided pulse shaping designs.
Date: September 5, 2007
Creator: Landen, O. L.; Bradley, D. K.; Braun, D. G.; Smalyuk, V. A.; Hicks, D. G.; Celliers, P. M. et al.
System: The UNT Digital Library
Horizontal Shear Wave Imaging of Large Optics (open access)

Horizontal Shear Wave Imaging of Large Optics

When complete the National Ignition Facility (NIF) will be the world's largest and most energetic laser and will be capable of achieving for the first time fusion ignition in the laboratory. Detecting optics features within the laser beamlines and sizing them at diameters of 0.1 mm to 10 mm allows timely decisions concerning refurbishment and will help with the routine operation of the system. Horizontally polarized shear waves at 10 MHz were shown to accurately detect, locate, and size features created by laser operations from 0.5 mm to 8 mm by placing sensors at the edge of the optic. The shear wave technique utilizes highly directed beams. The outer edge of an optic can be covered with shear wave transducers on four sides. Each transducer sends a pulse into the optic and any damage reflects the pulse back to the transmitter. The transducers are multiplexed, and the collected time waveforms are enveloped and replicated across the width of the element. Multiplying the data sets from four directions produces a map of reflected amplitude to the fourth power, which images the surface of the optic. Surface area can be measured directly from the image, and maximum depth was shown to be …
Date: September 5, 2007
Creator: Quarry, M J
System: The UNT Digital Library
Demonstration of an improved subfilter stress closure for WRF (open access)

Demonstration of an improved subfilter stress closure for WRF

None
Date: September 5, 2007
Creator: Mirocha, J D; Lundquist, J K; Chow, F K & Lundquist, K A
System: The UNT Digital Library