460 Matching Results

Results open in a new window/tab.

Photograph Removed from Oswald's Home

Photograph of a street and bridge in Minsk, Belarus. The photograph shows a group of people walking on a stairway and a bus traveling over a bridge. This photograph was in the possession of Lee Harvey Oswald and was removed from his home.
Date: 1963~
Creator: Dallas (Tex.). Police Department.
Object Type: Photograph
System: The Portal to Texas History
Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos (open access)

Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos

The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.
Date: March 1, 1989
Creator: Dennis, B.R.; Lawton, R.G.; Kolar, J.D. & Alvarado, A.
Object Type: Report
System: The UNT Digital Library
Study of the reactions p anti-p -> etac -> 3 eta and p anti-p -> etac' -> 3 eta (open access)

Study of the reactions p anti-p -> etac -> 3 eta and p anti-p -> etac' -> 3 eta

None
Date: January 1, 1999
Creator: Descrovi, Emiliano & U, /Turin
Object Type: Report
System: The UNT Digital Library
Transmission electron microscopy analysis of corroded metal waste forms. (open access)

Transmission electron microscopy analysis of corroded metal waste forms.

This report documents the results of analyses with transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (ED) of samples of metallic waste form (MWF) materials that had been subjected to various corrosion tests. The objective of the TEM analyses was to characterize the composition and microstructure of surface alteration products which, when combined with other test results, can be used to determine the matrix corrosion mechanism. The examination of test samples generated over several years has resulted in refinements to the TEM sample preparation methods developed to preserve the orientation of surface alteration layers and the underlying base metal. The preservation of microstructural spatial relationships provides valuable insight for determining the matrix corrosion mechanism and for developing models to calculate radionuclide release in repository performance models. The TEM results presented in this report show that oxide layers are formed over the exposed steel and intermetallic phases of the MWF during corrosion in aqueous solutions and humid air at elevated temperatures. An amorphous non-stoichiometric ZrO{sub 2} layer forms at the exposed surfaces of the intermetallic phases, and several nonstoichiometric Fe-O layers form over the steel phases in the MWF. These oxide layers adhere …
Date: April 15, 2005
Creator: Dietz, N. L.
Object Type: Report
System: The UNT Digital Library

The stairwell

Access: Use of this item is restricted to the UNT Community
Recording of Roger Doyle's The stairwell. For violin, pre-recorded voice, and electronics.
Date: 1992/1994
Creator: Doyle, Roger
Object Type: Sound
System: The UNT Digital Library
Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle (open access)

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for …
Date: June 21, 2012
Creator: Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M. & Sullivan, J. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory. (open access)

Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the …
Date: January 31, 2006
Creator: Ebert, W. E.
Object Type: Report
System: The UNT Digital Library
Uptakes of CS and SR on San Joaquin Soil Measured Following Astm Method c1733. (open access)

Uptakes of CS and SR on San Joaquin Soil Measured Following Astm Method c1733.

Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrations and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response …
Date: April 4, 2012
Creator: Ebert, W.L. & Petri, E.T. (Chemical Sciences and Engineering Division)
Object Type: Report
System: The UNT Digital Library
Water vulnerabilities for existing coal-fired power plants. (open access)

Water vulnerabilities for existing coal-fired power plants.

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their …
Date: August 19, 2010
Creator: Elcock, D.; Kuiper, J. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library
Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles. (open access)

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation …
Date: March 31, 2009
Creator: Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A. & Systems, Energy
Object Type: Report
System: The UNT Digital Library
Well-To-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles. (open access)

Well-To-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles.

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission …
Date: June 14, 2010
Creator: Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M. et al.
Object Type: Report
System: The UNT Digital Library
Fuel cycle comparison of distributed power generation technologies. (open access)

Fuel cycle comparison of distributed power generation technologies.

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.
Date: December 8, 2008
Creator: Elgowainy, A.; Wang, M. Q. & Systems, Energy
Object Type: Report
System: The UNT Digital Library

Diamant

Recording of John Elmsly's Diamant. This piece was composed in 1977, using a Flemish poem written and read by Chris Dries as text. Using a simple bank of tuned oscillators, a sequencer pattern to modulate an oscillator, and very simple tape manipulations to leave the words as intact as possible the work is intended as a meditative coloring of the poem.
Date: 1977
Creator: Elmsly, John
Object Type: Sound
System: The UNT Digital Library
Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report (open access)

Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report

None
Date: October 31, 2013
Creator: Ely, G.P. (LCF)
Object Type: Report
System: The UNT Digital Library
Reconnaissance evaluation of Honduran geothermal sites. Una evaluacion por medio de reconocimiento de seis areas geotermicas en Honduras (open access)

Reconnaissance evaluation of Honduran geothermal sites. Una evaluacion por medio de reconocimiento de seis areas geotermicas en Honduras

Six geothermal spring sites were selected on the basis of preliminary investigations conducted in Honduras over the last decade and were evaluated in terms of their development potential. Of the six, the Platanares and San Ignacio sites have high base temperatures and high surface fluid discharge rates and appear to have the best potential for further development as sources of electrical power. A third site, Azacualpa, has a high enough base temperature and discharge rate to be considered as a back-up, but the logistical problems involved in geophysical surveys make it less attractive than the two primary sites. Of the remaining three sites, Pavana may be a source of direct-use heat for local agricultural processing. Sambo Creek and El Olivar have either severe logistical problems that would impede further investigation and development or base temperatures and flow rates that are too low to warrant detailed investigation at this time.
Date: December 1, 1986
Creator: Eppler, D.; Fakundiny, R. & Ritchie, A.
Object Type: Report
System: The UNT Digital Library
Ultra-Fast Boriding for Improved Efficiency and Reduced Emissions in Materials Processing Industries (open access)

Ultra-Fast Boriding for Improved Efficiency and Reduced Emissions in Materials Processing Industries

None
Date: November 13, 2012
Creator: Erdemir, A.; Eryillmaz, O. & Sista, V. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002. (open access)

OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series …
Date: May 23, 2011
Creator: Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project final report, February 28, 2006. (open access)

OECD MCCI project final report, February 28, 2006.

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003. (open access)

OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not …
Date: May 23, 2011
Creator: Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W. & Basu, S.
Object Type: Report
System: The UNT Digital Library
Preliminary Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium Prepared by (open access)

Preliminary Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium Prepared by

None
Date: July 8, 2013
Creator: Feldman, E. E.; Foyto, L. P.; Kutikkad, K.; McKibben, J. C.; Peters, N. J.; Stevens, J. G. et al.
Object Type: Report
System: The UNT Digital Library
Modeling Adjustable Speed Pumped Storage Hydro Units Employing Doubly-Fed Induction Machines (open access)

Modeling Adjustable Speed Pumped Storage Hydro Units Employing Doubly-Fed Induction Machines

None
Date: October 25, 2013
Creator: Feltes, J.; Koritarov, V.; Guzowski, L.; Kazachkov, Y.; Gong, B.; Trouille, B. et al.
Object Type: Report
System: The UNT Digital Library
Review of Existing Hydroelectric Turbine-Governor Simulation Models (open access)

Review of Existing Hydroelectric Turbine-Governor Simulation Models

None
Date: October 25, 2013
Creator: Feltes, J.; Koritarov, V.; Guzowski, L.; Kazachkov, Y.; Lam, B.; Grande-Moran, C. et al.
Object Type: Report
System: The UNT Digital Library
Testing Dynamic Simulation Models for Different Types of Advanced Pumped Storage Hydro Units (open access)

Testing Dynamic Simulation Models for Different Types of Advanced Pumped Storage Hydro Units

None
Date: October 25, 2013
Creator: Feltes, J.; Koritarov, V.; Kazachkov, Y.; Gong, B.; Donalek, P.; Gevorgian, V. (Decision and Information Sciences) et al.
Object Type: Report
System: The UNT Digital Library
Guidelines for beamline and front-end radiation shielding design at the Advanced Photon Source. (open access)

Guidelines for beamline and front-end radiation shielding design at the Advanced Photon Source.

Shielding for the APS will be such that the individual radiation worker dose will be as low as reasonably achievable (ALARA). The ALARA goals for the APS are to keep the total of the work-related radiation exposure (exposure coming from other than natural or medical sources) as far below 500 person-mrem per year, collective total effective dose equivalent, as reasonably achievable. For an individual APS radiation worker, the goal is to keep the maximum occupational total effective dose equivalent of any one employee as far below 200 mrem/yr as reasonably achievable. The ALARA goal for APS beamline scientists is to keep the total of the work-related radiation exposure (exposure coming from other than natural or medical sources) as far below 100 person-mrem per year, collective total effective dose equivalent, as reasonably achievable. For an individual APS beamline scientist, the goal is to keep the maximum occupational total effective dose equivalent of any one scientist as far below 50 mrem/yr as reasonably achievable. The dose is actively monitored by the radiation monitors on the storage ring wall in each sector and by the frequent area surveys performed by the health physics personnel. For cases in which surveys indicate elevated hourly dose …
Date: September 11, 2008
Creator: Fernandez, P. & Division, X-Ray Science
Object Type: Report
System: The UNT Digital Library