Resource Type

Degree Department

Degree Discipline

Degree Level

States

Language

4 Matching Results

Results open in a new window/tab.

Senior Recital: 2009-06-04 - Michael Mario Georgiou, baritone

Access: Use of this item is restricted to the UNT Community
A senior recital presented at the UNT College of Music Recital Hall in partial fulfillment of the Bachelor of Music (BM) degree.
Date: June 4, 2009
Creator: Georgiou, Michael Mario
Object Type: Sound
System: The UNT Digital Library
Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development. (open access)

Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal …
Date: June 23, 2008
Creator: Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P. et al.
Object Type: Report
System: The UNT Digital Library
Summary of operations and performance of the Murdock site restoration project in 2007. (open access)

Summary of operations and performance of the Murdock site restoration project in 2007.

This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the second full year of system operation, from January 1 through December 31, 2007. Performance in June 2005 through December 2006 was reported previously (Argonne 2007). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review …
Date: June 3, 2008
Creator: LaFreniere, L. M.
Object Type: Report
System: The UNT Digital Library
SOEC efficiency and cost improvement Part 1 and 2. (open access)

SOEC efficiency and cost improvement Part 1 and 2.

Part I: Electrochemical and X-ray Characterization of Solid-Oxide Electrolysis Cell Oxygen Electrodes on Electrolyte Substrates--The governing reaction mechanisms, and the electrode and electrolyte material compositions and structures, that controls the efficiency and durability of the solid oxide electrolysis cells (SOEC) need to be identified and well-understood for a significant improvement in nuclear hydrogen production using high temperature steam electrolysis. ANL conducted experimental analysis of SOEC electrolyte and electrodes to progress in this objective. Our study on the oxygen electrode focused on specifically the effect of electrode crystal structure on its electrochemical performance, and the evolution of the electronic and structural properties of the electrodes while under electrochemical conditions and high temperature. We found through electrochemical impedance spectroscopy experiments that, while different crystal orientations in La{sub 0.8}Sr{sub 0.2}MnO{sub 3+d} (LSM) show different initial performance and different electrochemical activation under SOEC conditions, a good mixed ionic electronic conductor La{sub 0.8}Sr{sub 0.2}CoO{sub 3+d} (LSC) does not seem to exhibit similar variations. Our in-situ x-ray and electrochemical measurements at the Advanced Photon Source of ANL have identified the chemical states of the A-site elements of the doped lanthanum manganite electrodes. We found that the changes in the concentration and in the electronic state of …
Date: June 20, 2007
Creator: Yildiz, B.; Chang, K.-C.; Meyers, D. J.; You, H.; Carter, J. D.; Elam, J. W. et al.
Object Type: Report
System: The UNT Digital Library