92 Matching Results

Results open in a new window/tab.

Summary of Generation-IV transmutation impacts. (open access)

Summary of Generation-IV transmutation impacts.

An assessment of the potential role of Generation IV nuclear systems in an advanced fuel cycle has been performed. The Generation IV systems considered are the thermal-spectrum VHTR and SCWR, and the fast-spectrum GFR, LFR, and SFR. This report addresses the impact of each system on advanced fuel cycle goals, particularly related to waste management and resource utilization. The transmutation impact of each system was also assessed, along with variant designs for transuranics (TRU) burning. The base fuel cycle for the thermal reactor concepts (VHTR and SCWR) is a once-through fuel cycle using low-enriched uranium fuels. The higher burnup and thermal efficiency of the VHTR gives an advantage in terms of heavy-metal waste mass and volume, with lower decay heat and radiotoxicity of the spent fuel per electrical energy produced, compared to a PWR. Fuel utilization might, however, be worse compared to the PWR, because of the higher fuel enrichment essential to meeting the VHTR system design requirements. The SCWR concept also featured improved thermal efficiency; however, benefits are reduced by the lower fuel discharge burnup. The base fuel cycle for the fast reactor concepts (SFR, GFR, and LFR) is a closed fuel cycle using recycled TRU and depleted uranium …
Date: August 3, 2005
Creator: Taiwo, T. A. & Hill, R. N.
System: The UNT Digital Library
Operation of the APS photoinjector drive laser system. (open access)

Operation of the APS photoinjector drive laser system.

The APS photoinjector drive laser system has been in operation since 1999 and is achieving a performance level exceeding the requirement of stable operation of the LEUTL FEL system. One remarkable number is the UV energy stability of better than 2% rms, sometimes less than 1% rms. This report summarizes the operation experience of the laser system and the improvements made along the way. We also outline the route of upgrade of the system and some frontier laser research and development opportunities in ultrabright electron beam generation.
Date: January 24, 2005
Creator: Li, Y.
System: The UNT Digital Library
Modeling report of the CEA cadarache MINERVE reactor for the OSMOSE project. (open access)

Modeling report of the CEA cadarache MINERVE reactor for the OSMOSE project.

The OSMOSE program (Oscillation in Minerve of isotopes in ''Eupraxic'' spectra) is a collaboration between the U.S. Department of Energy (DOE) and the Commissariat a l' Energie Atomique (CEA). It aims at measuring integral absorption rates of minor actinides by the oscillation technique in the MINERVE experimental facility located at the CEA Cadarache Research Center. The OSMOSE program also includes a complete analytical program to understand and resolve potential discrepancies between calculated and measured values. The OSMOSE program began in 2001 and will continue until 2013. The Argonne National Laboratory has developed Monte Carlo and deterministic calculation models of the MINERVE facility to determine core and safety parameters such as axial and radial fission rate distributions, control rod worth, spectral indices, and the reactivity worth of oscillated samples. Oscillation samples include calibration samples with different uranium enrichments and boron concentrations and the OSMOSE samples--separated actinides including {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm and {sup 245}Cm. Seven different neutron spectra will be created in the MINERVE facility: an overmoderated UO{sub 2} matrix (representative of a fuel processing …
Date: February 25, 2005
Creator: Klann, R.; Perret, G.; Hudelot, J. P. & Antony, M.
System: The UNT Digital Library
Transmission electron microscopy analysis of corroded metal waste forms. (open access)

Transmission electron microscopy analysis of corroded metal waste forms.

This report documents the results of analyses with transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (ED) of samples of metallic waste form (MWF) materials that had been subjected to various corrosion tests. The objective of the TEM analyses was to characterize the composition and microstructure of surface alteration products which, when combined with other test results, can be used to determine the matrix corrosion mechanism. The examination of test samples generated over several years has resulted in refinements to the TEM sample preparation methods developed to preserve the orientation of surface alteration layers and the underlying base metal. The preservation of microstructural spatial relationships provides valuable insight for determining the matrix corrosion mechanism and for developing models to calculate radionuclide release in repository performance models. The TEM results presented in this report show that oxide layers are formed over the exposed steel and intermetallic phases of the MWF during corrosion in aqueous solutions and humid air at elevated temperatures. An amorphous non-stoichiometric ZrO{sub 2} layer forms at the exposed surfaces of the intermetallic phases, and several nonstoichiometric Fe-O layers form over the steel phases in the MWF. These oxide layers adhere …
Date: April 15, 2005
Creator: Dietz, N. L.
System: The UNT Digital Library
Fast neutrons incident on rotors : - tantalum. (open access)

Fast neutrons incident on rotors : - tantalum.

Reports in the Argonne National Laboratory Nuclear Data and Measurement Series present results of studies in the field of microscopic nuclear data. The primary objective of the series is the dissemination of information in the comprehensive form required for nuclear technology applications. This series is devoted to: (a) measured microscopic nuclear parameters, (b) experimental techniques and facilities employed in measurements, (c) the analysis, correlation and interpretation of nuclear data, and (d) the compilation and evaluation of nuclear data.
Date: March 21, 2005
Creator: Smith, A. B.
System: The UNT Digital Library
Impact of spectral transition zone in reference ENIGMA configuration. (open access)

Impact of spectral transition zone in reference ENIGMA configuration.

The gas-cooled fast reactor (GFR) is one of six advanced nuclear energy systems being studied under the auspices of the Gen IV International Forum (GIF). In a bilateral International Nuclear Energy Research Initiative (I-NERI) project French and U.S. national laboratories, industry, and universities are collaborating on the development of the GFR. This effort is led by the ANL in the U.S. and the CEA in France. Some of the attractions of the GFR include: (1) Hard spectrum and core breeding ratio, BR {approx} 1. These features allow minimal waste production, improved transmutation capability, optimal and flexible use of natural resources, potentially better economy (because of use of higher power density relative to current thermal gas-cooled systems), and improved non-proliferation (no fertile blanket); (2) Temperature resistant fuel and structure elements that are favorable to tight fission product confinement and system operation at high temperature; (3) High temperature and transparent helium (He) gas coolant that allows a high thermodynamic conversion efficiency, other energy applications (e.g., hydrogen production), and ease of in-service inspection and repair; and (4) Possible direct energy conversion cycle leading to a simpler design, increased conversion efficiency, and lower investment costs. The French strategy for advanced systems includes the development …
Date: October 5, 2005
Creator: Aliberti, G.; Palmiotti, G.; Taiwo, T. A. & Tommasi, J.
System: The UNT Digital Library
Recommendations for new monitoring wells at Everest, Kansas. (open access)

Recommendations for new monitoring wells at Everest, Kansas.

On February 15, 2007, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) submitted Recommendations for Remedial Action at Everest, Kansas. Those Recommendations were accepted by the Kansas Department of Health and Environment (KDHE) in a letter to the CCC/USDA dated March 5, 2007. The approved Recommendations document outlines a plan for systematic groundwater sampling and monitoring at Everest to provide data necessary for the critical evaluation of remedial options - including a phytoremediation alternative - for restoration of the groundwater and protection of the surface waters of the intermittent creek at this site. Phase I of the KDHE-approved monitoring plan includes the following activities: (1) Groundwater sampling at existing monitoring wells, with analyses for volatile organic compounds (VOCs) and selected biodegradation parameters; (2) Sampling of surface waters along the intermittent creek for VOCs analyses; and (3) Periodic manual measurement and automated recording of groundwater and surface water levels in the vicinity of the intermittent creek. The locations selected for groundwater and surface water sampling and analyses under the approved monitoring program were determined in consultation with the KDHE. As a result of subsequent discussions among representatives of the KDHE, the CCC/USDA, and Argonne regarding the technical program …
Date: May 3, 2007
Creator: LaFreniere, L. M.
System: The UNT Digital Library
A validation study of existing neutronics tools against ZPPR-21 and ZPPR-15 critical experiments. (open access)

A validation study of existing neutronics tools against ZPPR-21 and ZPPR-15 critical experiments.

A study was performed to validate the existing tools for fast reactor neutronics analysis against previous critical experiments. The six benchmark problems for the ZPPR-21 critical experiments phases A through F specified in the Handbook of Evaluated Criticality Safety Benchmark Experiments were analyzed. Analysis was also performed for three loading configurations of the ZPPR-15 Phase A experiments. As-built core models were developed in XYZ geometries using the reactor loading records and drawer master information. Detailed Monte Carlo and deterministic transport calculations were performed, along with various modeling sensitivity analyses. The Monte Carlo simulations were carried out with the VIM code with continuous energy cross sections based on the ENDF/B-V.2 data. For deterministic calculations, region-dependent 230-group cross sections were generated using the ETOE-2/MC-2/SDX code system, again based on the ENDF/B-V.2 data. Plate heterogeneity effects were taken into account by SDX unit cell calculations. Core calculations were performed with the TWODANT discrete ordinate code for the ZPPR-21 benchmarks, and with the DIF3D nodal transport option for the ZPPR-15 experiments. For all six ZPPR-21 configurations where the Pu-239 concentration varies from 0 to 49 w/o and the U-235 concentration accordingly varies from 62 to 0 w/o, the core multiplication factor determined with a …
Date: September 30, 2007
Creator: Yang, W.S. & Kim, S.J. (Nuclear Engineering Division)
System: The UNT Digital Library
Recommendations for Remedial Action at Everest, Kansas. (open access)

Recommendations for Remedial Action at Everest, Kansas.

On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE). This document suggested possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE included the following: (1) Hydraulic control by groundwater extraction with aboveground treatment; (2) Air sparging-soil vapor extraction (SVE) in large-diameter boreholes; and (3) Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to the proposed CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration …
Date: February 15, 2007
Creator: LaFreniere, L. M.
System: The UNT Digital Library
Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS. (open access)

Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS.

The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the …
Date: May 16, 2007
Creator: Tzanos, C. P. (Nuclear Engineering Division)
System: The UNT Digital Library
Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system. (open access)

Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the …
Date: May 16, 2008
Creator: Yang, W. S. & Lee, C. H. (Nuclear Engineering Division)
System: The UNT Digital Library
Tests of the Hardware and Software for the Reconstruction of Trajectories in the Experiment MINERvA (open access)

Tests of the Hardware and Software for the Reconstruction of Trajectories in the Experiment MINERvA

MINERvA experiment has a highly segmented and high precision neutrino detector able to record events with high statistic (over 13 millions in a four year run). MINERvA uses FERMILAB NuMI beamline. The detector will allow a detailed study of neutrino-nucleon interactions. Moreover, the detector has a target with different materials allowing, for the first time, the study of nuclear effects in neutrino interactions. We present here the work done with the MINERvA reconstruction group that has resulted in: (a) development of new codes to be added to the RecPack package so it can be adapted to the MINERvA detector structure; (b) finding optimum values for two of the MegaTracker reconstruction package variables: PEcut = 4 (minimum number of photo electrons for a signal to be accepted) and Chi2Cut = 200 (maximum value of {chi}{sup 2} for a track to be accepted); (c) testing of the multi anode photomultiplier tubes used at MINERvA in order to determine the correlation between different channels and for checking the device's dark counts.
Date: May 1, 2009
Creator: Palomino Gallo, Jose Luis & /Rio de Janeiro, CBPF
System: The UNT Digital Library
Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory. (open access)

Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the …
Date: January 31, 2006
Creator: Ebert, W. E.
System: The UNT Digital Library
Summary of first-year operations and performance of the Utica Aquifer and North Lake Basin Wetlands Restoration Project in October 2004-November 2005. (open access)

Summary of first-year operations and performance of the Utica Aquifer and North Lake Basin Wetlands Restoration Project in October 2004-November 2005.

This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the initial period of system operation, from October 29, 2004, until November 31, 2005. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and modifications and costs during the review period (Section 6). Section 7 summarizes the first year of operation.
Date: January 27, 2006
Creator: LaFreniere, L. M. & Sedivy, R. A.
System: The UNT Digital Library
Modeling of the repository behavior of TRISO fuel. (open access)

Modeling of the repository behavior of TRISO fuel.

This report satisfies Milestone 4295 for Work Package A0403K11. The long-term behavior of TRISO nuclear reactor fuel in a geologic repository is examined in terms of its durability and thermal impact. The TRISO fuel concept, under development at General Atomics[1] involves embedding fissile uranium and/or actinides in a carbonaceous material as shown in Fig. 1. In the concept, fuel kernels containing fissile material are surrounded with a porous carbon buffer and coated with inner and outer pyrocarbon layers separated with a SiC layer. The fuel particles are then imbedded in a graphite compact and the compacts placed in fuel channels drilled in fuel assembly blocks as shown in the lower right-hand corner of the figure. Dimensions are listed in Table 1. Available data on the degradation of the carbonaceous materials in an aqueous environment is reviewed. A model accounting for waste package failure and the resulting degradation of the waste forms is used to evaluate the potential for the long-term sequestration of radionuclides from spent TRISO fuel in the Yucca Mountain Repository. Finally, thermal analyses of decay heat assess the potential benefits in repository space utilization from recycling actinides from PWR spent fuel as very high burnup TRISO fuel. Experimental …
Date: January 31, 2006
Creator: Morris, E. E. & Bauer, T. H.
System: The UNT Digital Library
Low Conversion Ratio Fuel Studies. (open access)

Low Conversion Ratio Fuel Studies.

Recent studies on TRU disposition in fast reactors indicated viable reactor performance for a sodium cooled low conversion ratio reactor design. Additional studies have been initiated to refine the earlier work and consider the feasibility of alternate fuel forms such as nitride and oxide fuel (rather than metal fuel). These alternate fuel forms may have significant impacts upon the burner design and the safety behavior. The work performed thus far has focused on compiling the necessary fuel form property information and refinement of the physics models. For this limited project, the burner design and performance using nitride fuel will be assessed.
Date: February 28, 2006
Creator: Smith, M. A.
System: The UNT Digital Library
Neutrino oscillations: analysis of the response of the detector of the MINOS experiment to neutrino interactions (open access)

Neutrino oscillations: analysis of the response of the detector of the MINOS experiment to neutrino interactions

None
Date: February 1, 2004
Creator: Zois, Miltiadis G. & U., /Athens
System: The UNT Digital Library
Study of the CP Symmetry Violation in Partially Reconstructed B0 ---> D* Pi Decays With the BABAR Detector (open access)

Study of the CP Symmetry Violation in Partially Reconstructed B0 ---> D* Pi Decays With the BABAR Detector

None
Date: March 27, 2006
Creator: Legendre, Marie
System: The UNT Digital Library
Support vector machine classifiers for large data sets. (open access)

Support vector machine classifiers for large data sets.

This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.
Date: January 31, 2006
Creator: Gertz, E. M. & Griffin, J. D.
System: The UNT Digital Library
Physics Division annual report 2004. (open access)

Physics Division annual report 2004.

This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra …
Date: April 6, 2006
Creator: Glover, J.
System: The UNT Digital Library
Sistemas Eolicos Pequenos para Generacion de Electricidad; Una guia para consumidores en los EE.UU. (open access)

Sistemas Eolicos Pequenos para Generacion de Electricidad; Una guia para consumidores en los EE.UU.

This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.
Date: September 1, 2007
Creator: unknown
System: The UNT Digital Library
Status report on high fidelity reactor simulation. (open access)

Status report on high fidelity reactor simulation.

This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to …
Date: December 11, 2006
Creator: Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M. et al.
System: The UNT Digital Library
Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator. (open access)

Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator.

Hydrodynamic instability phenomena in a thin liquid lithium film, which has been proposed for the first stripper in the driver linac of Rare Isotope Accelerator (RIA), were discussed. Since it was considered that film instability could significantly impair the feasibility of the liquid lithium film stripper concept, potential issues and research tasks in the RIA project due to these instability phenomena were raised. In order to investigate these instability phenomena, a research proposal plan was developed. In the theoretical part of this research proposal, a use of the linear stability theory was suggested. In the experimental part, it was pointed out that the concept of Reynolds number and Weber number scaling may allow conducting a preliminary experiment using inert simulants, hence reducing technical difficulty, complexity, and cost of the experiments. After confirming the thin film formation in the preliminary experiment using simulants, demonstration experiments using liquid lithium were proposed.
Date: March 6, 2006
Creator: Momozaki, Y.
System: The UNT Digital Library
Framework for managing wastes from oil and gas exploration and production (E&P) sites. (open access)

Framework for managing wastes from oil and gas exploration and production (E&P) sites.

Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.
Date: September 15, 2007
Creator: Veil, J. A.; Puder, M. G. & Division, Environmental Science
System: The UNT Digital Library