Degree Department

States

14 Matching Results

Results open in a new window/tab.

Guest Artist Recital: 2011-01-30 - Fleurs-de-Lys

Access: Use of this item is restricted to the UNT Community
A faculty and guest artist recital presented at the UNT College of Music Voertman Hall.
Date: January 30, 2011
Creator: Fleurs-de-Lys
Object Type: Sound
System: The UNT Digital Library

Ensemble: 2011-11-30 – Women's Chorus and Men's Chorus

Access: Use of this item is restricted to the UNT Community
Concert presented at Winspear Hall at the Murchison Performing Arts Center.
Date: November 30, 2011
Creator: University of North Texas. Women's Chorus.
Object Type: Sound
System: The UNT Digital Library
A validation study of existing neutronics tools against ZPPR-21 and ZPPR-15 critical experiments. (open access)

A validation study of existing neutronics tools against ZPPR-21 and ZPPR-15 critical experiments.

A study was performed to validate the existing tools for fast reactor neutronics analysis against previous critical experiments. The six benchmark problems for the ZPPR-21 critical experiments phases A through F specified in the Handbook of Evaluated Criticality Safety Benchmark Experiments were analyzed. Analysis was also performed for three loading configurations of the ZPPR-15 Phase A experiments. As-built core models were developed in XYZ geometries using the reactor loading records and drawer master information. Detailed Monte Carlo and deterministic transport calculations were performed, along with various modeling sensitivity analyses. The Monte Carlo simulations were carried out with the VIM code with continuous energy cross sections based on the ENDF/B-V.2 data. For deterministic calculations, region-dependent 230-group cross sections were generated using the ETOE-2/MC-2/SDX code system, again based on the ENDF/B-V.2 data. Plate heterogeneity effects were taken into account by SDX unit cell calculations. Core calculations were performed with the TWODANT discrete ordinate code for the ZPPR-21 benchmarks, and with the DIF3D nodal transport option for the ZPPR-15 experiments. For all six ZPPR-21 configurations where the Pu-239 concentration varies from 0 to 49 w/o and the U-235 concentration accordingly varies from 62 to 0 w/o, the core multiplication factor determined with a …
Date: September 30, 2007
Creator: Yang, W.S. & Kim, S.J. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Progress report on development of intermediate fidelity full assembly analysis methods. (open access)

Progress report on development of intermediate fidelity full assembly analysis methods.

While high fidelity modeling capabilities for various physics phenomena are being pursued under advanced modeling and simulation initiatives under the DOE Office of Nuclear Energy, they generally rely on high-performance computation facilities and are too expensive to be used for parameter-space exploration or design analysis. One-dimensional system codes have been used for a long time and have reached a degree of maturity, but limit their validity to specific applications. Thus, an intermediate fidelity (IF) modeling method is being pursued in this work for a fast-running, modest-fidelity, whole-core transient analyses capability. The new approach is essential for design scoping and engineering analyses and could lead to improvements in the design of the new generations of reactors and to the reduction of uncertainties in safety analysis. This report summarizes the initial effort on the development of the intermediate-fidelity full assembly modeling method. The requirements and the desired merits of the IF approach have been defined. A three-dimensional momentum source model has been developed to model the anisotropic flow in the wire-wrapped rod bundle without the need to resolve the geometric details. It has been confirmed that the momentum source model works well if its affecting region is accurately imposed. The validity of …
Date: September 30, 2011
Creator: Hu, R. & Fanning, T. H. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems (open access)

Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems

Demand response (DR) is an effective tool which resolves inconsistencies between electric power supply and demand. It further provides a reliable and credible resource that ensures stable and economical operation of the power grid. This paper introduces systematic definitions for DR and demand side management, along with operational differences between these two methods. A classification is provided for DR programs, and various DR strategies are provided for application in air conditioning and refrigerating systems. The reliability of DR is demonstrated through discussion of successful overseas examples. Finally, suggestions as to the implementation of demand response in China are provided.
Date: November 30, 2007
Creator: Han, Junqiao & Piette, Mary Ann
Object Type: Article
System: The UNT Digital Library
Status report on SHARP coupling framework. (open access)

Status report on SHARP coupling framework.

This report presents the software engineering effort under way at ANL towards a comprehensive integrated computational framework (SHARP) for high fidelity simulations of sodium cooled fast reactors. The primary objective of this framework is to provide accurate and flexible analysis tools to nuclear reactor designers by simulating multiphysics phenomena happening in complex reactor geometries. Ideally, the coupling among different physics modules (such as neutronics, thermal-hydraulics, and structural mechanics) needs to be tight to preserve the accuracy achieved in each module. However, fast reactor cores in steady state mode represent a special case where weak coupling between neutronics and thermal-hydraulics is usually adequate. Our framework design allows for both options. Another requirement for SHARP framework has been to implement various coupling algorithms that are parallel and scalable to large scale since nuclear reactor core simulations are among the most memory and computationally intensive, requiring the use of leadership-class petascale platforms. This report details our progress toward achieving these goals. Specifically, we demonstrate coupling independently developed parallel codes in a manner that does not compromise performance or portability, while minimizing the impact on individual developers. This year, our focus has been on developing a lightweight and loosely coupled framework targeted at UNIC …
Date: May 30, 2008
Creator: Caceres, A.; Tautges, T. J.; Lottes, J.; Fischer, P.; Rabiti, C.; Smith, M. A. et al.
Object Type: Report
System: The UNT Digital Library
Status report on fast reactor recycle and impact on geologic disposal. (open access)

Status report on fast reactor recycle and impact on geologic disposal.

The GNEP program envisions continuing the use of light-water reactors (LWRs), with the addition of processing the discharged, or spent, LWR fuel to recover actinide and fission product elements, and then recycling the actinide elements in sodium-cooled fast reactors. Previous work has established the relationship between the processing efficiencies of spent LWR fuel, as represented by spent PWR fuel, and the potential increase in repository utilization for the resulting processing waste. The purpose of this current study is to determine a similar relationship for the waste from processing spent fast reactor fuel, and then to examine the wastes from the combination of LWRs and fast reactors as would be deployed with the GNEP approach.
Date: October 30, 2007
Creator: Bauer, T. H.; Morris, E. E. & Wigeland, R. A.
Object Type: Report
System: The UNT Digital Library
Trip report for field visit to Fayetteville Shale gas wells. (open access)

Trip report for field visit to Fayetteville Shale gas wells.

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on …
Date: September 30, 2007
Creator: Veil, J. A. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library
Impacts of TMDLs on coal-fired power plants. (open access)

Impacts of TMDLs on coal-fired power plants.

The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded …
Date: April 30, 2010
Creator: Veil, J. A. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library

Ensemble: 2014-09-30 – Choralfest! 2014

Access: Use of this item is restricted to the UNT Community
Choir concert performed at the UNT College of Music Winspear Hall.
Date: September 30, 2014
Creator: University of North Texas. Collegium Singers.
Object Type: Sound
System: The UNT Digital Library
Well-To-Wheels Analysis of Landfill Gas-Based Pathways and Their Addition to the Greet Model. (open access)

Well-To-Wheels Analysis of Landfill Gas-Based Pathways and Their Addition to the Greet Model.

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil …
Date: June 30, 2010
Creator: Mintz, M.; Han, J.; Wang, M.; Saricks, C. & Systems, Energy
Object Type: Report
System: The UNT Digital Library
ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector. (open access)

ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.

Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more …
Date: September 30, 2010
Creator: Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Security, National & Engineering, Inst. of Physics and Power
Object Type: Report
System: The UNT Digital Library
Water management technologies used by Marcellus Shale Gas Producers. (open access)

Water management technologies used by Marcellus Shale Gas Producers.

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.
Date: July 30, 2010
Creator: Veil, J. A. & Division, Environmental Science
Object Type: Report
System: The UNT Digital Library

Ensemble: 2019-03-30 – 22nd Annual African Cultural Festival of Traditional Ethnic Music and Dance

Access: Use of this item is restricted to the UNT Community
World ensembles concert performed at the UNT College of Music Voertman Hall.
Date: March 30, 2019
Creator: Afrikania Cultural Troupe of Ghana
Object Type: Video
System: The UNT Digital Library