Language

Carbon Capture Utilization for Bio-Based Building Insulation Foams

Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry and for other applications. This is because insulation is one of the most important aspects of the building envelope. Global building insulation is expected to reach USD 27.74 billion in 2022. Conventional insulation materials currently used in buildings are made from nonrenewable products (petroleum, fiber glass). However, they yield increasing unrecyclable eco-unfriendly waste at the end of their lives; styrene and polyurethane generates over 100,000 kg of waste insulation in US alone yearly. This is because they are non-biodegradable and can remain as microplastics in the environment for 1000 years. Polyurethane contains the same amount of energy as coal. Additionally, most of the processing techniques and blowing agents used in this manufacturing of these foams are cancerous and injurious to health when inhaled. Because buildings and their construction together account for 36% of global energy use and 39% of energy-related carbon dioxide emissions annually, there is a need to develop eco-friendly foams that will serve as possible substitutes to the currently used petroleum-based foams. This dissertation examined the development and characterization of eco-friendly foams that were developed using the melt mixing technique of bio-resourced …
Date: August 2021
Creator: Oluwabunmi, Kayode Emmanuel
System: The UNT Digital Library
Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling (open access)

Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling

This dissertation focuses on studying membrane air dehumidification for a membrane moisture exchanger in a membrane heat pump system. The study has two parts: an optimization of membrane moisture exchanger for air dehumidification in the macroscale, and diffusion of water vapor in polymer nanocomposites membrane for humid air dehumidification in the nanoscale. In the first part of the research, the mass transport of water vapor molecules through hydrophilic silica nanochannel chains in hydrophobic polyurethane matrix was studied by simulations and experiments for different membrane moisture exchanger design configurations. The mass transport across the polymer nanocomposite membrane occurs with the diffusion of moist air water vapor molecules in the membrane moisture exchanger in a membrane heat pump air conditioning system for air dehumidification purposes. The hydrophobic polyurethane matrix containing the hydrophilic silica nanochannel chains membrane is responsible for transporting water vapor molecules from the feed side to the permeate side of the membrane without allowing air molecules to pass through.In the second part of the research, diffusion analysis of the polymer nanocomposite membrane were performed in the nanoscale for the polymer nanocomposite membrane. The diffusion phenomena through the polymer, the polymer nanocomposite without modifying the silica surfaces, and the polymer nanocomposite …
Date: August 2020
Creator: Almahmoud, Omar H. M.
System: The UNT Digital Library

Heat Transfer Analysis of a Small Thermochemical Reactor for Hydrogen Production from Ammonia

Several types of research are ongoing throughout the world, to discover economical and reliable techniques to create hydrogen, and propagate the vision of a hydrogen economy. This research examines a COMSOL Multiphysics 5.4 heat transfer model for a hydrogen production system consisting of a retort with two different heat sources, namely a heat tape and an infrared (IR) lamp. The main objective was to compare the two heat sources and find out which one offers a better technique for producing hydrogen by raising the internal center core temperature of the retort from ambient to the highest temperature, preferably 700℃, within the shortest time possible and using less power consumption in attaining the targeted temperature. Through this study, it was established that the IR lamp could potentially help with energy savings by using just 4 kWh to reach the targeted temperature within an hour.
Date: August 2020
Creator: Owusu-Ansah, Nana
System: The UNT Digital Library

Lignocellulose-Based Nanobiocomposites for Water Purification

The research focuses on the synthesis and application of multifunctional lignocellulosic biomass bioadsorbent and nanobiocomposites for water purification. A bioadsorbent was prepared from kenaf fiber by self-activation without the use of any toxic chemicals in an innovative method. Silver nanoparticles were synthesized by the green route and then impregnated on the surface of kenaf-based activated carbon (KAC), and hemp fibers by heating and photoirradiation. The formation of hemp-based and kenaf-based silver nanocomposites was confirmed using an environmental scanning electron microscope and energy-dispersive x-ray spectroscopy. Low-cost benign nanoadsorbents demonstrated excellent capabilities for the anionic dye Congo red (CR) and cationic dye brilliant green (BG) degradation, inorganic heavy metals [Cu (II), Pb (II), and Cd (II)] adsorption and antibacterial activities. Antibacterial test via a modified disc diffusion method and minimum inhibitory concentrations was assessed towards the pathogenic strains of bacteria, E. coli and S. aureus. A working portable point-of-use filter was designed and developed, with the filter column encapsulated with nanobiocomposites for the removal of multi-metals and dye. Water samples collected from a wastewater treatment plant in Texas and a mining site in Mexico were used to determine the efficacy of the nanobiocomposites columned in the filter. A comparative analysis was also …
Date: August 2021
Creator: Mandal, Sujata
System: The UNT Digital Library

Passive Control of Fiber Orientation in Direct Ink Writing 3D Printing

Several active methods, which requires external control systems and moving parts, have been developed to control the fiber orientation during 3D printing. Active mechanisms like rotating nozzle, impeller, and magnetic field have been integrated to realize complex internal fiber structures. In this study, instead of using active methods, I investigate a passive method for controlling the fiber orientation without any moving parts or additional mechatronics added in the printing process. Composites of polydimethylsiloxane (PDMS) and glass fibers (GF) are 3D printed. Channels, such as helicoid, are designed and integrated to guide the ink flow and passively result in different pre-alignment of fibers before the ink flow into narrow nozzle space. While passing through the designed channels, the fibers orient due to the shear between channel walls and the ink. The effect of helicoids with different pitch sizes are investigated via mechanical experiments, microstructural analysis, and numerical simulations. The results show that both surface to volume ratio and helix angle of the channel affect pre-alignment of fiber orientation at the entry of nozzle. The internal fiber structures lead to enhanced and tunable mechanical properties of printed composites. Pitch size 7-9 mm (helix angle of 7.92- 10.15o) is found to be optimal …
Date: August 2020
Creator: Khatri, Nava Raj
System: The UNT Digital Library
Radial and Axial Designs for Magnetic Absorbent Collector in Water (open access)

Radial and Axial Designs for Magnetic Absorbent Collector in Water

The use of collection systems for magnetic sorbents such as Magnetic Activated Carbon are discussed in order to gauge their efficacy in marine environments. Two collectors were built and tested, one which utilized a radial orientation of magnets and another with axially placed magnets. The two systems underwent a series of test with differing linear velocities and angular velocities. From the results, the axial system outperformed its radial counterpart, being most effective with a relatively high concentration of discs placed in series. The medium concentration, however, proved increasingly effective with higher velocities, meaning an optimization concentration exists for this design. The radial system was tested with high and low concentrations of small and large magnets, respectively. The larger magnets, although providing less concentration points in the alternating array, proved more effective for the collection of MAC. From these tests several new innovations were suggested, including belt tensioners, add on mechanisms, and a hybridized design in order to fully optimize the collection of MAC.
Date: August 2020
Creator: Renzetti, Andrew John
System: The UNT Digital Library

Refrigeration Insulation Using Phase Change Material Incorporated Polyurethane Foam for Energy Savings

Incorporating insulation material with phase change materials (PCMs) could help enhance the insulation capability for a refrigerator system. The phase change material can absorb or release large amount of latent heat of fusion depending on surrounding temperatures for efficient thermal management. This research focuses on how incorporating PCM to the conventional PU foam insulation affects the inside temperatures of the refrigerator system and in-turn helps in conserving energy by reducing the compressor run time. It was found that only 0.25-inch-thick PCM layer in insulation can certainly benefit the refrigerators by reducing the amount of electricity consumption and thus increasing the total energy savings through the numerical study results via COMSOL Multiphysics in this study. This work aims to investigate a PCM-incorporated insulation material to accomplish the enhancement of thermal insulation performance for refrigerators.
Date: August 2020
Creator: Shaik, Sania
System: The UNT Digital Library