Advanced Cathodes for High Energy Density Lithium Sulfur Battery

A systematic development of 2D alloy catalyst with synergistic performance of high lithium polysulfide (LiPS) binding energy and efficient Li+ ion/electron conduction is presented. The first section of work found that Li+ ions can flow through the percolated ion transport pathway in polycrystalline MoS2, while Na+ and K+ ions can easily flow through the percolated 1D ion channel near the grain boundaries. An unusually high ionic conductivity of extrinsic Li+, Na+, and K+ ions in 2D MoS2 film exceeding 1 S/cm was measured that is more than two orders of magnitude higher than those of conventional solid ionic materials, including 2D ionic materials. The second section of this dissertation focus on catalyzing the transformation of LiPSs to prevent the shuttle effect during the battery cycling by synthesizing 2H (semiconducting) – 1T (metallic) mixed phase 2D Mo0.5W0.5S2 alloy on CNF paper, using two step sputtering and sulfurization method. The lithium sulfur (Li-S) battery cell assembled with the 2D Mo0.5W0.5S2/CNF/S cathode shows a high specific capacity of 1228 mAh g-1 at 0.1C and much higher cyclic stability over 4 times as compared to the pristine cathodes. The high LiPSs binding energy of catalyst efficiently prevents the shuttling effect and corrosion of Li …
Date: December 2021
Creator: Bhoyate, Sanket
System: The UNT Digital Library

Alloy Design, Processing and Deformation Behavior of Metastable High Entropy Alloys

This dissertation presents an assortment of research aimed at understanding the composition-dependence of deformation behavior and the response to thermomechanical processing, to enable efficient design and processing of low stacking fault energy (SFE) high entropy alloy (HEAs). The deformation behavior and SFE of four low SFE HEAs were predicted and experimentally verified using electron microscopy and in-situ neutron diffraction. A new approach of employing a minimization function to refine and improve the accuracy of a semi-empirically derived expression relating composition with SFE is demonstrated. Ultimately, by employing the minimization function, the average difference between experimental and predicted SFE was found to be 2.64 mJ m-2. Benchmarking with currently available approaches suggests that integrating minimization functions can substantially improve prediction accuracy and promote efficient HEA design with expansion of databases. Additionally, in-situ neutron diffraction was used to present the first in-situ measurement of the interspacing between stacking faults (SFs) which were correlated with work hardening behavior. Electron transparent specimens (< ~100 nm thick) were used in order to resolve nanoscale planar faults instead of the thicker sub-sized specimens (on the order of millimeters in thickness) which exhibit the classical stages III work hardening behavior characteristic of low SFE metals and alloys. …
Date: May 2021
Creator: Frank, Michael (Materials science researcher)
System: The UNT Digital Library
Characterization and Chemical Analysis of Fundamental Components for Lead Acid Batteries (open access)

Characterization and Chemical Analysis of Fundamental Components for Lead Acid Batteries

Although markets for alternative batteries, such as Li-ion, are growing, Pb-alloy batteries still dominate the market due to their low cost and good functionality. Even though these Pb-alloy batteries have been around since their discovery in 1859, little research involving advanced characterization techniques, such as synchrotron radiation X-ray diffraction (SR-XRD) and transmission electron diffraction (TEM) have been performed on Pb-alloys and sulfation, a failure mode in lead acid batteries, with regards to thermally- and electrochemically-induced changes at the atomic and microstructural scale. Therefore, there is a need to close this scientific gap between research and the application of Pb-alloy battery material. The main objectives of this research are to examine the process of sulfation and its growth mechanisms as well as to study the effects of minor alloying additions in Pb-alloy material. In the first case, nucleation and growth mechanisms of PbSO4 nano- and micro-particles in various solutions are examined using TEM to potentially reduce or control the buildup of PbSO4 on battery electrodes over time. The time dependency of particle morphology was observed using various reaction conditions. This insight can provide avenues to reduce unwanted buildup of PbSO4 on battery electrodes over time which can extend battery life and …
Date: May 2022
Creator: Wall, Michael T
System: The UNT Digital Library

Considerations in Designing Alloys for Laser-Powder Bed Fusion Additive Manufacturing

This work identifies alloy terminal freezing range, columnar growth, grain coarsening, liquid availability towards the terminal stage of solidification, and segregation towards boundaries as primary factors affecting the hot-cracking susceptibility of fusion-based additive manufacturing (F-BAM) processed alloys. Additionally, an integrated computational materials engineering (ICME)-based approach has been formulated to design novel Al alloys, and high entropy alloys for F-BAM processing. The ICME-based approach has led to heterogeneous nucleation-induced grain refinement, terminal eutectic solidification-enabled liquid availability, and segregation-induced coalescence of solidification boundaries during laser-powder bed fusion (L-PBF) processing. In addition to exhibiting a wide crack-free L-PBF processing window, the designed alloys exhibited microstructural heterogeneity and hierarchy (MHH), and thus could leverage the unique process dynamics of L-PBF to produce a fine-tunable MHH and mechanical behavior. Furthermore, alloy chemistry-based fine tuning of the stacking fault energy has led to transformative damage tolerant alloys. Such alloys can shield defects stemming from the stochastic powder bed in L-PBF, and consequently can prevent catastrophic failure despite the solidification defects. A modified materials systems approach that explicitly includes alloy chemistry as a means to modify the printability, properties and performance with F-BAM is also presented. Overall, this work is expected to facilitate application specific manufacture with …
Date: May 2022
Creator: Thapliyal, Saket
System: The UNT Digital Library

Corrosion Behavior of High Entropy Alloys in Molten Chloride and Molten Fluoride Salts

High entropy alloys (HEAs) or complex concentrated alloys (CCAs) represent a new paradigm in structural alloy design. Molten salt corrosion behavior was studied for single-phase HEAs such as TaTiVWZr and HfTaTiVZr, and multi-phase HEAs such as AlCoCrFeNi2.1. De-alloying with porosity formation along the exposed surface and fluxing of unstable oxides were found to be primary corrosion mechanisms. Potentiodynamic polarization study was combined with systematic mass–loss study for TaTiVWZr, HfTaTiVZr, and AlCoCrFeNi2.1 as a function of temperature. Electrochemical impedance spectroscopy (EIS) was used for monitoring the corrosion of TaTiVWZr and HfTaTiVZr in molten fluoride salt at 650 oC. TaTiVWZr and AlCoCrFeNi2.1 showed low corrosion rate in the range of 5.5-7.5 mm/year and low mass-loss in the range of 35-40 mg/cm2 in molten chloride salt at 650 oC. Both TaTiVWZr and HfTaTiVZr showed similar mass loss in the range of 31-33 mg/cm2, which was slightly higher than IN 718 (~ 28 mg/cm2) in molten fluoride salt at 650 oC. Ta-W rich dendrite region in TaTiVWZr showed higher corrosion resistance against dissolution of alloying elements in the molten salt environment. AlCoCrFeNi2.1 showed higher resistance to galvanic corrosion compared to Duplex steel 2205 in molten chloride salt environment. These results suggest the potential use …
Date: May 2022
Creator: Patel, Kunjalkumar Babubhai
System: The UNT Digital Library
Developing Modern Atom Probe Tomography for Nonmetals (open access)

Developing Modern Atom Probe Tomography for Nonmetals

Atom probe tomography as a 3D atomic-scale characterization tool has seen considerable development in the past decade, both in systems improvement and theoretical understanding. However, the time and expertise required from the outset of experimentation to analyzed results is highly asymmetric between metals and nonmetals. For complex oxides, this difficulty can be exemplified by GdBa2Cu3O7-x based high-temperature superconducting coated conductors. The objective of this dissertation is to further establish the experimental and theoretical knowledge required to effectively, and compositionally, study nanoscale defects in nonmetals using atom probe tomography; specifically, those influencing the electromagnetic properties of RBa2Cu3O7-x high temperature superconducting coated conductors. The results from this dissertation can be applied to other complex oxides, nitrides, carbides, or other nonmetallic systems, through the creation and use of an extensive open-source Python package, APAV.
Date: December 2022
Creator: Smith, Jesse Daniel
System: The UNT Digital Library

Effects of Surface Texture and Porosity on the Corrosion Behavior and Biocompatibility of Pure Zinc Biomaterials for Orthopedic Applications

In this dissertation, small and large NaCl particle-derived surfaces (Ra > 40 microns) were generated on 2D Zn materials, and the surfaces were carefully studied concerning topography, corrosion behavior, and bone cell compatibility. Increases in surface roughness accelerated the corrosion rate, and cell viability was maintained. This method was then extended to 3D porous scaffolds prepared by a hybrid AM/casting technique. The scaffolds displayed a near-net shape, an interconnected pore structure, increasing porosity paralleled to an increased corrosion rate, an ability to support cell growth, and powerful antibacterial properties. Lastly, nano/micro (Rz 0.02–1 microns) topographies were generated on 2D Zn materials, and the materials were comprehensively studied with special attention devoted to corrosion behavior, biocompatibility, osteogenic differentiation, immune cell response, hemocompatibility, and antibacterial performance. For the first time, the textured nonhemolytic surfaces on Zn were shown to direct cell fate, and the micro-textures promoted bone cell differentiation and directed immune cells away from an inflammatory phenotype.
Date: May 2021
Creator: Cockerill, Irsalan
System: The UNT Digital Library

Electrochemical Behavior of Catalytic Metallic Glasses

Metallic Glasses are multi-component alloys with disordered atomic structures and unique and attractive properties such as ultra-high strength, soft magnetism, and excellent corrosion/wear resistance. In addition, they may be thermoplastically processed in the supercooled liquid region to desired shapes across multiple length-scales. Recently developed metallic glasses based on noble metals (such as Pt and Pd) are highly active in catalytic reactions such as hydrogen oxidation, oxygen reduction, and degradation of organic chemicals for environmental remediation. However, there is a limited understanding of the underlying electrochemical mechanisms and surface characteristics of catalytically active metallic glasses. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the activity of a systematic series of Pt42.5−xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The activity and electrochemically active surface area as a function of composition are in the form of volcano plots, with a peak around an equal proportion of Pt and Pd. These amorphous alloys showed more than two times the hydrogen oxidation reactivity compared to pure Pt. This high activity was attributed to their lower electron work function and higher binding energy of Pt core level that reduced charge-transfer resistance and improved electrocatalytic activity …
Date: July 2023
Creator: Mahajan, Chaitanya
System: The UNT Digital Library
Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach (open access)

Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach

Asymmetric polymeric materials can be formed by either top-down or bottom-up methods. Bottom-up methods involve assembling the atoms and molecules to form small nanostructures by carefully controlled synthesis, which results in a reduction of some of the top-down limitations. In this dissertation, thermal, tribological and antireflective properties of polymeric materials have been enhanced by introducing structural asymmetry. The overall performance of commercial polymeric coatings, e.g. epoxy and polyvinyl chloride, has been improved by conducting the blending methods, specifically, chemical modification (α,ω-dihydroxydimethyl(methyl-vinyl)oligoorganosiloxane), cross-linking (triallyl isocyanurate), and antioxidant (tris(nonylphenyl) phosphite) incorporation. The nonequilibrium polymeric structures (moth-eye and square array) have been developed for the ultrahigh molecular weight block copolymers via the short-term solvent vapor annealing self-assembly. The large domain size of the moth eye structure allows for improvement of the light transmittance particularly in the visible and near infrared ranges, while the square arrangement of the block copolymer opens the possibility of magnetic data storage application by the large magnetic nanoparticles' embedment or masking of the superconductors.
Date: May 2022
Creator: Hnatchuk, Nataliia
System: The UNT Digital Library

First Principles Study of the Effect of Local Bonding on Diffusion Mechanisms in Alloys

This work demonstrates how local, randomized tailoring of bond stiffness can affect the activation energy of diffusion in model alloys using density functional theory-based computations. This work is organized into two parts. The first part deals with the vacancy diffusion mechanism, and it compares the in–plane (IP) vs out-of-plane (OOP) diffusion paths in prototypical binary Mg-X (Ca, Y, and Gd) and ternary Mg-X (Ca, Y, and Gd)-Zn alloys. We examine how vacancy formation, migration, and solute vacancy binding energies in binary Mg-X alloys influence diffusion activation and correlated them with conventional diffusion model based solely on the solute sizes. Next, we explore how Zn addition to binary Mg-X (Ca, Y, and Gd) alloys influences the OOP activation energy barrier is discussed in terms of detailed energetic computations and bond characterization in the present work. Our results indicate that Zn addition further enhances the OOP activation energy barrier compared to corresponding activation energies in Mg binaries. This work concludes that engineering stiffer directional bonds via micro-alloying additions in Mg is a promising route to dramatically improve their high temperature creep response. The second part of my work investigates the effects of Si, P, and S solutes on H interstitial diffusion mechanism …
Date: December 2021
Creator: Paranjape, Priyanvada Madhukar
System: The UNT Digital Library

High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements and/or thermomechanical processing. This dissertation is focused on fundamental understanding of high strain-rate deformation behavior of several high entropy alloy systems with widely varying microstructures. Ballistic impact testing of face centered cubic Al0.1CoCrFeNi high entropy alloy showed failure by ductile hole growth. The deformed microstructure showed extensive micro-banding and micro-twinning at low velocities while adiabatic shear bands and dynamic recrystallization were seen at higher velocities. The Al0.7CoCrFeNi and AlCoCrFeNi2.1 eutectic high entropy alloys, with BCC and FCC phases in lamellar morphology, showed failure by discing. A network of cracks coupled with small and inhomogeneous plastic deformation led to the brittle mode of failure in these eutectic alloys. Phase-specific mechanical behavior using small-scale techniques revealed higher strength and strain rate sensitivity for the B2 phase compared to the L12 phase. The interphase boundary demonstrated good stability without any …
Date: May 2021
Creator: Muskeri, Saideep
System: The UNT Digital Library

In-situ Electrochemical Surface Engineering in Additively Manufactured CoCrMo for Enhanced Biocompatibility

Laser-based additive manufacturing is inherently associated with extreme, unprecedented, and rapid thermokinetics which impact the microstructural evolution in a built component. Such a unique, near to non-equilibrium microstructure/phase evolution in laser additively manufactured metallic components impact their properties in engineering application. In light of this, the present work investigates the unique microstructural traits as a result of process induced spatial and temporal variation in thermokinetic parameters in laser directed energy deposited CoCrMo biomedical alloy. The influence of such a unique microstructural evolution in laser directed energy deposited CoCrMo on electrochemical response in physiological media was elucidated and compared with a conventionally manufactured, commercially available CoCrMo component. Furthermore, while investigation of the electrochemical response, such a microstructural evolution in laser directed energy deposited CoCrMo led to in-situ surface modification of the built components in physiological media via selective, non-uniform electrochemical etching. Such in-situ surface modification resulted in enhanced biocompatibility in terms of mammalian cell growth, cell-substrate adhesion, blood compatibility, and antibacterial properties indicating improved osteointegration, compared to a conventionally manufactured, commercially available CoCrMo component.
Date: May 2023
Creator: Mazumder, Sangram
System: The UNT Digital Library

Integration, Stability, and Doping of Mono-Elemental and Binary Transition Metal Dichalcogenide Van der Waals Solids for Electronics and Sensing Devices

In this work, we have explored 2D semiconducting transition metal dichalcogenides (TMDs), black phosphorus (BP), and graphene for various applications using liquid and mechanical exfoliation routes. The topical areas of interest that motivate our work include considering factors such as device integration, stability, doping, and the effect of gasses to modulate the electronic transport characteristics of the underlying 2D materials. In the first area, we have integrated solution-processed transparent conducting oxides (TCOs), specifically indium-doped tin oxide (ITO) with BP, which is a commonly used TCO for solar cell devices. Here we have found surface treatment of glass substrates with a plasma before spin-coating the solution-processed ITO, to be effective in improving coverage and uniformity of the ITO film by promoting wettability and film adhesion. The maximum transmittance obtained was measured to be ~75% in the visible region, while electrical measurements made on BP/ITO heterostructures showed improved transport characteristics compared to the bare ITO film. Within the integration realm, inkjet-printing of BP and MoS2 p-n hetero-junctions on standard ITO glass substrates in a vertical architecture was also demonstrated. To address the issue of stability which some 2D materials such as BP face, we experimented with ionic liquids (ILs) to passivation the …
Date: May 2022
Creator: Mehta, Ravindra K
System: The UNT Digital Library

Investigation of Porous Ceramic Structure by Freeze-Casting

The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing parameters of the magnetic field-assisted freeze-casting method were optimized with a focus on comparing the structure obtained using vertical and horizontal magnetic fields and understanding the mechanisms that occur under different freezing modes. More specifically, this processing method was used to produce Al2O3 and B4C porous ceramics materials with unidirectionally-aligned pore channels. The effect of the vertical and horizontal magnetic field strength and direction, concentration of magnetic material (Fe3O4), cooling rate, and freezing time were examined. The resulting ceramics with highly aligned pore channels were infiltrated with molten metal to create metal matrix composites. The mechanical properties of these structures were measured and were subsequently correlated to their morphology and composition.
Date: May 2021
Creator: Bakkar, Said Adnan
System: The UNT Digital Library
Mechanically Driven Reconstruction of Materials at Sliding Interfaces to Control Wear (open access)

Mechanically Driven Reconstruction of Materials at Sliding Interfaces to Control Wear

To minimize global carbon emissions, having efficient jet engines and internal combustion engines necessitates utilizing lightweight alloys such as Al, Ti, and Mg-based alloys. Because of their remarkable strength/weight ratio, these alloys have received a lot of attention. Nonetheless, they have very poor tribological behavior, particularly at elevated temperatures beyond 200 °C, when most liquid lubricants begin to fail in lubrication. Over the last two decades, there has been a lot of interest in protecting Al, and Ti-based alloys by developing multiphase solid lubricants with a hard sublayer that provide mechanical strength and maintain the part's integrity while providing lubricity. The development of novel coatings with superior lubricity, high toughness, and high-temperature tolerance remains a challenging and hot topic to research and provide new engineered solutions for. To address and provide solutions to protect light-weight, i.e., Al, and Ti alloys at high-temperature and bestow superior tribological properties to such alloys, three types of adaptive lubricious coatings have been studied in this thesis: Nb-Ag-O self-healing lubricious ternary oxide, PEO-chameleon a self-adaptive multi-phase coating, and Sb2O3-MSH-C lubricious adaptive coatings to address this challenge. The development of the Nb-Ag-O ternary resulted in a coefficient of friction as low as 0.2 at 600 °C …
Date: May 2022
Creator: Shirani, Asghar
System: The UNT Digital Library

Next Generation Friction Stir Welding Tools for High Temperature Materials

The historical success of friction stir welding (FSW) on materials such as aluminum and magnesium alloys is associated with the absence of melting and solidification during the solid-state process. However, commercial adoption of FSW on steels and other non-ferrous high-strength, high-temperature materials such as nickel-base and titanium-base alloys is limited due to the high costs associated with the process. In this dissertation, the feasibility of using an FSW approach to fabricate certain structural components made of nitrogen containing austenitic stainless steels that go into the vacuum vessel and magnetic systems of tokamak devices was demonstrated. The FSW weldments possessed superior application-specific mechanical and functional properties when compared to fusion weldments reported in the technical literature. However, as stated earlier, the industrial adoption of FSW on high temperature materials such as the ferrous alloys used in the present study is greatly limited due to the high costs associated with the process. The cost is mainly dictated by the high temperature FSW tools used to accomplish the weldments. Commercially available high temperature FSW tools are exorbitantly priced and often have short lifetimes. To overcome the high-cost barrier, we have explored the use of integrated computational materials engineering (ICME) combined with experimental prototyping …
Date: July 2023
Creator: Gaddam, Supreeth
System: The UNT Digital Library

Origin of Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys

High entropy alloys (HEAs), also referred to as complex concentrated alloys (CCAs), are a relatively new class of alloys that have gained significant attention since 2010 due to their unique balance of properties that include high strength, ductility and excellent corrosion resistance. HEAs are usually based on five or more elements alloyed in near equimolar concentrations, and exhibit simple microstructures by the formation of solid solution phases instead of complex compounds. HEAs have great potential in the design of new materials; for instance, for lightweight structural applications and elevated temperature applications. The relation between grain size and yield strength has been a topic of significant interest not only to researchers but also for industrial applications. Though some research papers have been published in this area, consensus among them is lacking, as the studies yielded different results. Al atom being a large atom causes significant lattice distortion. This work attempts to study the Hall-Petch relationship for Al0.3CoFeNi and Al0.3CoCrFeNi and to compare the data of friction stress σ0 and Hall-Petch coefficient K with published data. The base alloys for both these alloys are CoFeNi and CoCrFeNi respectively. It was observed by atom probe tomography (APT) that clustering of Al-Ni atoms in …
Date: May 2021
Creator: Jagetia, Abhinav
System: The UNT Digital Library

Self-Healing Ceramics for High Temperature Application

Ceramics have a wide variety of applications due to their unique properties; however, the low fracture toughness leads the formation and propagation of unpredictable cracks, and reduces their reliability. To solve this problem, self-healing adaptive oxides were developed. The aim of the work is to gain new insights into self-healing mechanisms of ceramics and their application. Binary oxide systems were investigated that are at least partially healed through the extrinsic or intrinsic addition of silver or silver oxide to form ternary oxides (e.g., Nb2O5 + Ag → AgNbO3). Sintered pellets and coatings were tested. For self-healing TBCs, model systems that were studied include YSZ-Al2O3-SiC, YSZ-Al2O3-TiC, YSZ-Al2O3-Nb2O5, and YSZ-Al2O3-Ta2O5. Laser cladded samples and sintered pellets were produced to test. The healing process occurs due to the formation of oxidation products and glassy phases depending on the self-healing mechanism. X-ray diffraction was used to explore phase evolution, chemical compositions, and structural properties of these samples. SEM equipped with EDS was used to investigate the chemical and morphological properties for the cross-sectional area. Pin-on-disc test was applied to test tribology performance for Nb2O5-Ag2O system, and infiltration test was applied to test CMAS-resistance for TBCs at elevated temperature. The improvements in the performance of …
Date: August 2021
Creator: Gu, Jingjing
System: The UNT Digital Library

Small Scale Fracture Mechanisms in Alloys with Varying Microstructural Complexity

Small-scale fracture behavior of four model alloy systems were investigated in the order of increasing microstructural complexity, namely: (i) a Ni-based Bulk Metallic Glass (Ni-BMG) with an isotropic amorphous microstructure; (ii) a single-phase high entropy alloy, HfTaTiVZr, with body centered cubic (BCC) microstructure; (iii) a dual-phase high entropy alloy, AlCoCrFeNi2.1, with eutectic FCC (L12) -BCC (B2) microstructure; and (iv) a Medium-Mn steel with hierarchical microstructure. The micro-mechanical response of these model alloys was investigated using nano-indentation, micro-pillar compression, and micro-cantilever bending. The relaxed Ni-BMG showed 6% higher hardness, 22% higher yield strength, and 26% higher bending strength compared to its as-cast counterpart. Both the as-cast and corresponding relaxed BMGs showed stable notch opening and blunting during micro-cantilever bending tests rather than unstable crack propagation. However, pronounced notch weakening was observed for both the structural states, with the bending strength lower by ~ 25% for the notched samples compared to the un-notched samples. Deformation behavior of HfTaTiVZr was evaluated by micropillar compression and micro-cantilever bending as a function of two different grain orientations, namely [101] and [111]. The [111] oriented micropillars demonstrated higher strength and strain hardening rate compared to [101] oriented micropillars. The [111] oriented micropillars showed transformation induced plasticity …
Date: July 2023
Creator: Jha, Shristy
System: The UNT Digital Library

Structures of Multicomponent Silicate and Borosilicate Glasses from Molecular Dynamics Simulations: Effects of Iron Redox Ratio and Cation Field Strength

Multicomponent silicate and borosilicate glasses find wide technological applications ranging from optical fibers, biomedicine to nuclear waste disposal. As a common component of earth's mantle and nuclear waste, iron is a frequent encounter in silicate and borosilicate melts and glasses. The redox ratio in glass matrix defined by the ratio of ferrous and ferric ions is dependent on factors such as temperature, pressure, and oxygen fugacity. Understanding their roles on the short- and medium-range structure of these glasses is important in establishing the structure-property relationships which are important for glass composition design but usually difficult to obtain from experimental characterization techniques alone. Classical molecular dynamics simulations were chosen in this dissertation to study iron containing glasses due to challenges in experimental techniques such as NMR spectroscopy originated from the paramagnetic nature of iron. Magnesium is also a common element in the oxide glass compositions and its effect on the structure of boroaluminosilicate glasses were also investigated. Magnesium ion (Mg2+) has relatively higher cation field strength than other modifier cations and its structural role in oxide glasses is still under debate. Therefore, investigating the effects of cation field strength of modifier cations in light of MgO in boroaluminosilicate glasses is also …
Date: May 2023
Creator: Tuheen, Manzila Islam
System: The UNT Digital Library

Synergistic Effects of Lattice Instability and Chemical Ordering on FCC Based Complex Concentrated Alloys

The current work investigates how the interactions among constituent elements in high entropy alloys or complex concentrated alloys (HEA/CCAs) can lead to lattice instability and local chemical ordering which in turn affects the microstructure and properties of these alloys. Using binary enthalpies of mixing, the degree of ordering in concentrated multi-component solid solutions was successfully tailored by introducing Cr, Al and Ti in a CoFeNi HEA/CCA. CoFeNi was selected as the base alloy to achieve a close to random solid solution as indicated by the near-zero binary enthalpies in CoFeNi alloy system. The room temperature tensile properties of these alloys with varied degree of ordering follow a consistent trend where yield stress increased with degree of ordering. This novel approach provides a new alloy design strategy to obtain controlled ordering tendencies and consequently targeted mechanical properties. Further studies on specific alloys have been conducted to utilize this ordering tendency in attaining precipitation strengthening. For this purpose, Al, Ti and Ni were selected to promote ordering and Co, Fe, and Cr were chosen to strengthen the solid solution matrix. In Al0.25CoFeNi HEA/CCA, the ordering tendency between Al and Ni results in a competition between two long-range ordered phases, L12 and B2. …
Date: August 2021
Creator: Dasari, Sriswaroop
System: The UNT Digital Library
Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys (open access)

Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys

Shape memory alloys (SMAs) represent a revolutionary class of active materials that can spontaneously generate strain based on an environmental input, such as temperature or stress. SMAs can provide potential solutions to many of today's engineering problems due to their compact form, high energy densities, and multifunctional capabilities. While many applications in the biomedical, aerospace, automotive, and defense industries have already been investigated and realized for nickel-titanium (NiTi) based SMAs, the effects of controlling and designing the microstructure through processing (i.e. extreme cold working) have not been well understood. Current Ni-Ti based SMAs could be improved upon by increasing their work output, improving dimensional stability, preventing accidental actuation, and reducing strain localization. Additionally, there is a strong need to increase the transformation temperature above 115 °C, the current limit for NiTi and is especially important for aerospace applications. Previous research has shown that the addition on ternary elements such as Au, Hf, Pd, Pt, and Zr to NiTi can greatly increase these transformation temperatures. However, there are several limiting factors with these ternary additions such as increased cost, especially with Au, Pd, and Pt, as well as, difficulty in conventionally processing these alloys. Therefore, the main objectives of this research …
Date: May 2020
Creator: Ley, Nathan A
System: The UNT Digital Library

Thermodynamics, Kinetics and Mechanical Behavior of Model Metallic Glasses

The thermophysical properties and deformation behavior of a systematic series of model metallic glasses was investigated. For Zr-based metallic glasses with all metallic constituents, the activation energy of glass transition was determined to be in the range of 74-173 kJ/mol while the activation energy of crystallization was in the range of 155-170 kJ/mol. The reduced glass transition temperature was roughly the same for all the alloys (~ 0.6) while the supercooled liquid region was in the range of 100-150 K, indicating varying degree of thermal stability. In contrast, the metal-metalloid systems (such as Ni-Pd-P-B) showed relatively higher activation energy of crystallization from short range ordering in the form of triagonal prism clusters with strongly bonded metal-metalloid atomic pairs. Deformation mechanisms of all the alloys were investigated by uniaxial compression tests, strain rate sensitivity (SRS) measurements, and detailed characterization of the fracture surface morphology. For the metal-metal systems, plasticity was found to be directly correlated with shear transformation zone (STZ) size, with systems of larger STZ size showing better plasticity. In metal-metalloid amorphous alloys, plasticity was limited by the distribution of STZ units, with lower activation energy leading to more STZ units and better plasticity. The alloys with relatively higher plasticity …
Date: December 2023
Creator: Akhtar, Mst Alpona
System: The UNT Digital Library
Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing (open access)

Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing

Laser-based additive manufacturing offers a high degree of thermokinetic flexibility that has implications on the structure and properties of the fabricated component. However, to exploit the flexibility of this process, it is imperative to understand the process-inherent thermokinetic evolution and its effect on the material characteristics. In view of this, the present work establishes a fundamental understanding of the spatiotemporal variation of thermokinetics during the fabrication of the non-ferrous alloys using the laser powder bed fusion process. Due to existing limitations of experimental techniques to probe such thermokinetics, a finite element method-based computational model is developed to predict the thermokinetic variations during the process. With the computational approach coupled with experimental techniques, the current work presents the solidification behavior influenced by spatially varying thermokinetics. In addition, it uniquely predicts the process-inherent multi-track multi-layer evolution of thermal cycles as well as thermal stress cycles and identifies their influence on the post-solidification microstructural evolution involving solid-state phase transformation. Lastly, the response of the material with a unique microstructure is recorded under various conditions (static and dynamic), which is again compared with the same set properties obtained for the same material processed via conventional routes.
Date: December 2021
Creator: Pantawane, Mangesh V
System: The UNT Digital Library