Design Method for Cold-Formed Steel Shear Wall Sheathed with Polymer Composite Panel

In order to predict the strength of shear wall with cold-formed steel framing members, analytical models were reviewed. Multiple analytical models were studied, as well as twenty-one connection tests were performed. The connection tests consist of 50-ksi cold-formed steel framing track, different fastening configurations, and different sheathing thicknesses (1/8" and 1/2"). No.12 screw resulted in the highest peak load of all fastening configurations, while the rivet connection had the lowest peak load. In addition, failure modes were observed after conducting the connection tests including shear in fastening, screw pullout, and bearing in the sheathing. However, only the rivet and No.10 screw fastening configurations were used in the prediction analysis of the shear wall by the elastic model. Six shear wall tests were conducted on both panels (1/2"and 1/8" thickness). After doing the comparison between the experimental and the elastic model, the percentage difference for the 1/8" and the 1/2" polymer composite panels (3''along the edge and 6''along the chord stud), was very small. It was 6.2% for the 1/8" and 2.96% for the 1/2" panels. This means the analytical model can predict the shear wall peak load. However, the percentage difference was slightly higher being 7.4% for the 1/2" polymer …
Date: August 2020
Creator: Dewaidi, Mohaned Ali
System: The UNT Digital Library

Fabrication and Testing of Polymeric Flexible Sheets with Asymmetric Distributed Magnetic Particles for Biomedical Actuated Devices

This thesis explores a method to fabricate magnetic membranes with asymmetric distribution of particles and their testing as actuators. Focus of this research is to fabricate thin polymeric sheets and thickness range of 120-125µm, with asymmetric distribution of magnetic nano particles, employing micromagnets during the fabrication. The micromagnets are used to localize the magnetic particles during the curing process at selected locations. The effect of the asymmetric distribution of magnetic particles in the membrane is used for the first time. Magnetite (Fe3O4) is used as the magnetic particles that is embedded into a polymeric membrane made of polydimethylsiloxane (PDMS); the membrane is then tested in terms of deflection observed by using a high-resolution camera. From the perspective of the biomedical application, PDMS is chosen for its excellent biocompatibility and mechanical properties, and Fe3O4 for its non-toxic nature. Since magnetic actuation does not require onboard batteries or other power systems, it is very convenient to use in embedded devices or where the access is made difficult. A comparative study of membranes with asymmetric and randomly distributed particles is carried out in this thesis. The asymmetric distribution of magnetic particles can benefit applications involving localized and targeted treatments and precision medicine.
Date: May 2022
Creator: Bakaraju, Megha Ramya
System: The UNT Digital Library

Modeling and Analysis of Prototype Shelter Structure on Abaqus

Due to the constraint of high costs and limitations of load conditions, experimental testing is not appropriate for the static study of shelter structures. Comparatively, an effective computational modeling and numerical solution demonstrates significant advantages for understanding the response of steel shelter structures. This study gives an insight into the structural integrity of the prototype shelter structure which is examined using computer simulation of the shelter structure on Abaqus/CAE 2019. The results of the computer modelling demonstrate the response of shelter structure under ten different loading conditions as per ISO 1496:2013 (E). The loading conditions are applied to various components of the shelter structure and corresponding deflection are observed.
Date: August 2020
Creator: Rao, Noraiz
System: The UNT Digital Library

Structural Analysis and Finite Element Modeling of Aluminum Honeycomb Sandwich Structures

The objective of this research is to determine how the sandwich's physical characteristics have an impact on the mechanical properties, determine under what conditions the specimens will be lighter and mechanically stronger, and determine if the use of an aluminum honeycomb sandwich as a construction material is feasible. The research has aimed at the use of aluminum sandwiches as light and strong material. The study of the structural layers' damage resistance and tolerance demonstrated that the top and bottom layers play a crucial role. The thesis presents three test results from aluminum honeycomb sandwich compression horizontal, compressive vertical, and bending tests. Also, each group was displayed mechanically and simulated in Abaqus. The study determines the mechanical properties such as maximum elastic stress-strain, ultimate stress-strain, fracture point, density, poison ration, young modulus, and maximum deflection was determined. The energy absorbed by the FEA, such modulus of elasticity, resilience, and toughness, the crack propagation, the test's view shows aluminum honeycomb behaved like a brittle material with both compression test. And the maximum deflection, crack propagation, shear forces, bending moment, and images illustrated that the layers play a crucial role in the 3-point bend test.
Date: May 2021
Creator: Doukoure, Maimouna
System: The UNT Digital Library

Structural, Thermal, and Corrosion Properties of a Cold-Formed Steel Rigid Wall Relocatable Shelter

A prototype rigid wall relocatable shelter was designed and constructed using cold-formed steel (CFS) construction techniques including shear walls with corrugated sheathings. The design of the shelter was to be mechanically sound with adequate thermal performance and resistance to corrosion. Modeling of structural shear walls was performed using ABAQUS and verified with experimental results. At the project's conclusion, a completed full-scale prototype shelter was constructed.
Date: May 2020
Creator: Rowen, Alexander David
System: The UNT Digital Library
Study of the Corrosion Resistance of 316L Stainless Steel Made by Directed Energy Deposition for Applications at an Elevated Temperature (open access)

Study of the Corrosion Resistance of 316L Stainless Steel Made by Directed Energy Deposition for Applications at an Elevated Temperature

The corrosion resistance under elevated temperature of additively manufactured 316L stainless steel made by directed energy deposition was studied. Test samples were prepared in a hybrid additive manufacturing machine using standard deposition parameters recommended by the manufacturer. Control samples were cut from wrought material to compare the results. The test was performed under a corrosive atmosphere with a solution of water with 3.5 % in weight of salt (NaCl). The total duration of the test was 635 hours, divided in five stages of 12, 24, 48, 226, and 325 hours to analyze the samples between each stage. The samples were analyzed quantitatively measuring weight loss and surface topography, and qualitatively by macroscopic inspection with digital photography, and microscopic inspection with optical and scanning electron microscopy. The results show a higher corrosion rate for the additively manufactured samples compared to the control samples. An evident increase in the size of pits initially present on the samples was observed and quantified on the additively manufactured. Although the additively manufactured samples were more aggressively attacked by corrosion, they still presented a shiny surface finish at the end of the test, reinforcing the idea of the formation of a passive oxide layer and suggesting …
Date: December 2021
Creator: Canales Cantu, Alberto Alejandro
System: The UNT Digital Library