Traditional and Deep Learning Approaches to Color Image Compression and Pattern Recognition Problems (open access)

Traditional and Deep Learning Approaches to Color Image Compression and Pattern Recognition Problems

This thesis includes three separate research projects focusing on computer vision principles and deep learning pattern recognition problems. Chapter 3 entails color quantization applications using traditional Kmeans clustering techniques and random selection of color techniques within the red, green, blue (RGB) color space to maintain a high-quality image while significantly reducing image file size. Chapter 4 consists of a handwriting character recognition algorithm using backpropagation to classify 70,000 handwritten values from US Census Bureau employees and high school students. Chapter 5 proposes a novel classification technique for 109,446 unique heartbeat samples to identify areas of interest and assist medical professionals in diagnosing heart problems.
Date: August 2021
Creator: Jaques, Lorenzo E
System: The UNT Digital Library
Wireless Power Transfer and Power Management Unit Integrated with Low-Power IR-UWB Transmitter for Neuromodulation and Self-Powered Sensor Applications (open access)

Wireless Power Transfer and Power Management Unit Integrated with Low-Power IR-UWB Transmitter for Neuromodulation and Self-Powered Sensor Applications

This dissertation is particularly focused on a novel approach of a wirelessly powered neuromodulation system for chronic patients. The inductively coupled transmitter (TX) and receiver (RX) coils are designed through optimization to achieve maximum efficiency. A power management unit (PMU) consisting of a voltage rectifier, voltage regulator along with a stimulation circuitry is also designed to provide pulse stimulation to genetically modified neurons. For continuous health monitoring purposes, the response from the brain due to stimulation needs to be recorded and transmitted wirelessly outside the brain for analysis. A low-power high-data duty-cycled impulse-radio ultra-wideband (IR-UWB) transmitter is designed and implemented using the standard CMOS process. Another focus of this dissertation is the design of a reverse electrowetting-on-dielectric (REWOD) based energy harvesting circuit for wearable sensor applications which is capable of generating a very low-frequency signal from motion activity such a walking, running, jogging, etc. A commercial off-the-shelf (COTS) based and on-chip based energy harvesting circuit is designed for very low-frequency signals. The experimental results show promising progress towards the advancement in the wirelessly powered neuromodulation system and building the self-powered wearable sensor.
Date: May 2022
Creator: Biswas, Dipon Kumar
System: The UNT Digital Library
Wireless Power Transfer (WPT) System Design for Freely-Moving Animals for Optogenetic Neuromulation Applications (open access)

Wireless Power Transfer (WPT) System Design for Freely-Moving Animals for Optogenetic Neuromulation Applications

Wireless power transfer (WPT) is currently the most efficient way for transmission of power from one port to another, that is popularly used in various applications.This technique can change the previous energy utilization methods in various applications such as electronic devices, implanted medical devices, electrical vehicles and so forth.It mainly helps overcome the limitations of short battery life, limited storage, heavy weight, and high cost of batteries.This paper is based on the design of a transmitter and a receiver to achieve wireless power transfer for applications like optogenetic stimulation in rodents. With inductive coupling, a very high efficiency can be achieved between the transmitting and receiving coils of an antenna at small distances. When the transmitter and receiver are strongly coupled and are working at their resonant frequencies, the range of efficient WPT can be extended. In this work, the simulations are performed in HFSS at a resonating frequency of 13.56 MHz.A 4-port transmitter and a single-port planar receiver model are developed in HFSS, and the simulations are performed to graph the S parameters with a separation distance of 4cm. A Wilkinson power divider is designed using ADS to split the power from the four ports of the transmitter. The …
Date: May 2022
Creator: Sudhakar, Ramya
System: The UNT Digital Library

Wireless Surface Acoustic Wave Sensor for PM2.5 Detection

Currently, there is no equipment to measure the real-time fit of EHMR or N-95masks which are used in harsh environments. Improper fit of these EHMRs or N-95 masks exposes the personnel to hazardous environments. Surface acoustic wave (SAW) sensors have been around for few decades and are being used in various applications. In this work, real-time PM2.5 detection using passive wireless SAW sensors is presented. The design of meander antenna at 433MHz for wireless interrogation of SAW sensor using HFSS and ADS is also presented in this thesis. This works also includes the design of YZ-lithium niobate SAW sensor including COMSOL simulation.
Date: May 2022
Creator: Mamidipally, Sai Karthik
System: The UNT Digital Library