Language

Counting Plane Tropical Curves via Lattice Paths in Polygons (open access)

Counting Plane Tropical Curves via Lattice Paths in Polygons

A projective plane tropical curve is a proper immersion of a graph into the real Cartesian plane subject to some conditions such as that the images of all the edges must be lines with rational slopes. Two important combinatorial invariants of a projective plane tropical curve are its degree, d, and genus g. First, we explore Gathmann and Markwig's approach to the study of the moduli spaces of such curves and explain their proof that the number of projective plane tropical curves, counting multiplicity, passing through n = 3d + g -1 points does not depend on the choice of points, provided they are in tropical general position. This number of curves is called a Gromov-Written invariant. Second, we discuss the proof of a theorem of Mikhalkin that allows one to compute the Gromov-Written invariant by a purely combinatorial process of counting certain lattice paths.
Date: December 2021
Creator: Zhang, Yingyu
System: The UNT Digital Library

A New Class of Stochastic Volatility Models for Pricing Options Based on Observables as Volatility Proxies

One basic assumption of the celebrated Black-Scholes-Merton PDE model for pricing derivatives is that the volatility is a constant. However, the implied volatility plot based on real data is not constant, but curved exhibiting patterns of volatility skews or smiles. Since the volatility is not observable, various stochastic volatility models have been proposed to overcome the problem of non-constant volatility. Although these methods are fairly successful in modeling volatilities, they still rely on the implied volatility approach for model implementation. To avoid such circular reasoning, we propose a new class of stochastic volatility models based on directly observable volatility proxies and derive the corresponding option pricing formulas. In addition, we propose a new GARCH (1,1) model, and show that this discrete-time stochastic volatility process converges weakly to Heston's continuous-time stochastic volatility model. Some Monte Carlo simulations and real data analysis are also conducted to demonstrate the performance of our methods.
Date: December 2021
Creator: Zhou, Jie
System: The UNT Digital Library

Optimal Pair-Trading Decision Rules for a Class of Non-linear Boundary Crossings by Ornstein-Uhlenbeck Processes

The most useful feature used in finance of the Ornstein-Uhlenbeck (OU) stochastic process is its mean-reverting property: the OU process tends to drift towards its long- term mean (its equilibrium state) over time. This important feature makes the OU process arguably the most popular statistical model for developing best pair-trading strategies. However, optimal strategies depend crucially on the first passage time (FPT) of the OU process to a suitably chosen boundary and its probability density is not analytically available in general. Even for crossing a simple constant boundary, the FPT of the OU process would lead to crossing a square root boundary by a Brownian motion process whose FPT density involves the complicated parabolic cylinder function. To overcome the limitations of the existing methods, we propose a novel class of non-linear boundaries for obtaining optimal decision thresholds. We prove the existence and uniqueness of the maximizer of our decision rules. We also derive simple formulas for some FPT moments without analytical expressions of its density functions. We conduct some Monte Carlo simulations and analyze several pairs of stocks including Coca-Cola and Pepsi, Target and Walmart, Chevron and Exxon Mobil. The results demonstrate that our method outperforms the existing procedures.
Date: December 2021
Creator: Tamakloe, Emmanuel Edem Kwaku
System: The UNT Digital Library

Option Pricing Under New Classes of Jump-Diffusion Processes

In this dissertation, we introduce novel exponential jump-diffusion models for pricing options. Firstly, the normal convolution gamma mixture jump-diffusion model is presented. This model generalizes Merton's jump-diffusion and Kou's double exponential jump-diffusion. We show that the normal convolution gamma mixture jump-diffusion model captures some economically important features of the asset price, and that it exhibits heavier tails than both Merton jump-diffusion and double exponential jump-diffusion models. Secondly, the normal convolution double gamma jump-diffusion model for pricing options is presented. We show that under certain configurations of both the normal convolution gamma mixture and the normal convolution double gamma jump-diffusion models, the latter exhibits a heavier left or right tail than the former. For both models, the maximum likelihood procedure for estimating the model parameters under the physical measure is fairly straightforward; moreover, the likelihood function is given in closed form thereby eliminating the need to embed a probability density function recovery procedure such as the fast Fourier transform or the Fourier-cosine expansion methods in the parameter estimation procedure. In addition, both models can reproduce the implied volatility surface observed in the options data and provide a good fit to the market-quoted European option prices.
Date: December 2023
Creator: Adiele, Ugochukwu Oliver
System: The UNT Digital Library