Language

Hypoxia-Induced Cardiac Arrest Alters Central Nervous System Concentrations of the GLYT2 Glycine Transporter in Zebrafish (Danio rerio) (open access)

Hypoxia-Induced Cardiac Arrest Alters Central Nervous System Concentrations of the GLYT2 Glycine Transporter in Zebrafish (Danio rerio)

Hypoxia as a stressor has physiological implications that have been a focal point for many physiological studies in recent years. In some studies, hypoxia had large effects on the organ tissue degeneration, which ultimately effects multiple ecological processes. These organ tissue studies played a part in the development of new fields like neurocardiology, a specialty that studied the relationship between the brain and the heart. This thesis focuses on how hypoxia-induced cardiac arrest alters the amounts of GLYT2, a glycine reuptake transporter, in the central nervous system of zebrafish, Danio rerio. At 7 days post-fertilization (dpf), zebrafish were exposed to acute, severe hypoxia until they lost equilibrium, and minutes later, subsequent cardiac arrest occurred. Zebrafish were then placed into recovery groups to measure the GLYT2 levels at multiple points in zebrafish recovery. Fish were then sacrificed, and their brains dissected. Using immunofluorescence, the outer left optic tectum of the zebrafish was imaged, and mean image pixel fluorescent intensity was taken. There were significant changes (one-way ANOVA) in the levels of GLYT2 compared to that of the control groups during the course of recovery. GLYT2 levels continued to rise through the 24-hour recovery mark but did not show significant difference after …
Date: July 2023
Creator: Auzenne, Alexis
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Identification and Characterization of a Mutation Causing Stunted Growth in Arabidopsis that is Linked to Phosphate Perception (open access)

Identification and Characterization of a Mutation Causing Stunted Growth in Arabidopsis that is Linked to Phosphate Perception

Plant yield is an agronomic trait dependent on the transport of photosynthate from mature source leaves to sink tissues. Manipulating phloem transport may lead to increased yield, however in a previous study, Arabidopsis thaliana overexpressing sucrose transporter AtSUC2 in the phloem resulted in stunted growth and an apparent P-deficiency. In the course of further characterizing the phenotype and identifying the causative mutation, this research included 1) reverse genetics to test genes hypothesized to modulate carbon-phosphate interactions; 2) whole genome sequencing to identify all T-DNA insertions in plants displaying the phenotype; 3) genetic crosses and segregation analysis to isolate the causative mutation; and 4) transcriptomics to capture gene-expression profiles in plants displaying the phenotype. These phenotypes were traced to a T-DNA insertion located on chromosome 4. Transcriptomics by RNA-Seq and data analysis through bioinformatics pipelines suggest disruptions in metabolic and transport pathways that include phosphate, but do not support a direct role of well-established phosphate acquisition mechanisms. Gene At1G78690 is immediately downstream of the T-DNA insertion site and shows modestly increased expression relative to wild type plants. At1G78690 encodes O-acyl transferase, which is involved in processing N-acylphosphotidyl ethanolamine (NAPE) to N-acyl ethanolamine (NAE). Exogenous NAE application causes stunted growth in specific …
Date: December 2020
Creator: Shaikh, Mearaj Ahmed A J
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Identification and Characterization of Genes Required for Symbiotic Nitrogen Fixation in Medicago truncatula Tnt1 Insertion Mutants

In this dissertation I am using M. truncatula as a model legume that forms indeterminate nodules with rhizobia under limited nitrogen conditions. I take advantage of an M. truncatula Tnt1 mutant population that provides a useful resource to uncover and characterize novel genes. Here, I focused on several objectives. First, I carried out forward and reverse genetic screening of M. truncatula Tnt1 mutant populations to uncover novel genes involved in symbiotic nitrogen fixation. Second, I focused on reverse genetic screening of two genes, identified as encoding blue copper proteins, and characterization of their mutants' potential phenotypes. Third, I further characterized a nodule essential gene, M. truncatula vacuolar iron transporter like 8 (MtVTL8), which encodes a nodule specific iron transporter. I characterized the expression pattern, expression localization and function of MtVTL8. Additionally, I characterized several residues predicted to be essential to function using a model based on the known crystal structure of Eucalyptus grandis vacuolar iron transporter 1 (EgVIT1), a homologous protein to MtVTL8. I identified several potential essential residues of the MtVTL8 protein, mutagenized them, and through complementation experiments in planta and in yeast assessed functionality of the resulting protein. This helped us to better understand the potential mechanism by …
Date: July 2023
Creator: Cai, Jingya
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Identification and Characterization of Two Putative Sulfate Transporters Essential for Symbiotic Nitrogen Fixation in Medicago truncatula

The process of symbiotic nitrogen fixation (SNF) in legume root nodules requires the channeling and exchange of nutrients within and between the host plant cells and between the plant cells and their resident rhizobia. Using a forward genetics approach in the Medicago truncatula Tnt1 mutant population followed by whole genome sequencing, two putative sulfate transporter genes, MtSULTR3;5 and MtSULTR3;4b, were identified. To support the hypothesis that the defective putative sulfate transporter genes were the causative mutation for the mutants' phenotypes, the M. truncatula Tnt1 population was successfully reverse screened to find other mutant alleles of the genes. The F2 progeny of mutants backcrossed with wildtype R108 demonstrated co-segregation of mutant phenotypes with the mutant alleles confirming that the mutated mtsultr3;5 and mtsultr3;4b genes were the cause of defective SNF in the mutant lines mutated in the respective genes. This finding was further established for mtsultr3;4b by successful functional complementation of a mutant line defective in the gene with the wildtype copy of MtSULTR3;4b. A MtSULTR3;4b promoter-GUS expression experiment indicated MtSULTR3;4b expression in the vasculature and infected and uninfected plant cells of root nodules. MtSULTR3;4b was found to localize to the autophagosome membrane when expressed in Nicotiana benthamiana. A transcriptomics study …
Date: December 2022
Creator: Pradhan, Rajashree
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Identification, Characterization and Engineering of UDP-Glucuronosyltransferases for Synthesis of Flavonoid Glucuronides

Flavonoids are polyphenolics compounds that constitute a major group of plant specialized metabolites, biosynthesized via the phenylpropanoid/polymalonate pathways. The resulting specialized metabolites can be due to decoration of flavonoid compounds with sugars, usually glucose, by the action of regiospecific UDP-glycosyltransferase (UGT) enzymes. In some cases, glycosylation can involve enzymatic attachment of other sugar moieties, such as glucuronic acid, galactose, rhamnose or arabinose. These modifications facilitate or impact the bioactivity, stability, solubility, bioavailability and taste of the resulting flavonoid metabolites. The present work shows the limitations of utilizing mammalian UDP-glucuronosyltransferases (UGATs) for flavonoid glucuronidation, and then proceeds to investigate plant UG(A)T candidates from the model legume Medicago truncatula for glucuronidating brain-targeted flavonoid metabolites that have shown potential in neurological protection. We identified and characterized several UG(A)T candidates from M. truncatula which efficiently glycosylate various flavonoids compounds with different/multiple regiospecificities. Biochemical characterization identified one enzyme, UGT84F9, that efficiently glucuronidates a range of flavonoid compounds in vitro. In addition, examination of the ugt84f9 gene knock-out mutation in M. truncatula indicates that UGT84F9 is the major UG(A)T enzyme that is necessary and sufficient for attaching glucuronic acid to flavonoid aglycones, particularly flavones, in this species. Finally, the identified UG(A)T candidates were analyzed via homology …
Date: December 2020
Creator: Adiji, Olubu Adeoye
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Impact of Anti-S2 Peptides on a Variety of Muscle Myosin S2 Isoforms and Hypertrophic Cardiomyopathy Mutants Revealed by Fluorescence Resonance Energy Transfer and Gravitational Force Spectroscopy

Myosin subfragment-2 (S2) is an intrinsically unstable coiled coil. This dissertation tests if the mechanical stability of myosin S2 would influence the availability of myosin S1 heads to actin thin filaments. The elevated instability in myosin S2 coiled coil could be one of the causes for hypercontractility in Familial Hypertrophic Cardiomyopathy (FHC). As hypothesized FHC mutations, namely E924K and E930del, in myosin S2 displayed an unstable myosin S2 coiled coil compared to wild type as measured by Fluorescence Resonant Energy Transfer (FRET) and gravitational force spectroscopy (GFS). To remedy this, anti-S2 peptides; the stabilizer and the destabilizer peptides by namesake were designed in our lab to increase and decrease the stability of myosin S2 coiled coil to influence the actomyosin interaction. Firstly, the effectiveness of anti-S2 peptides were tested on muscle myosin S2 peptides across MYH11 (smooth), MYH7 (cardiac), and MYH2 (skeletal) with GFS and FRET. The results demonstrated that the mechanical stability was increased by the stabilizer and decreased by the destabilizer across the cardiac and skeletal myosin S2 isoform but not for the smooth muscle isoform. The destabilizer peptide had dissociation binding constants of 9.97 × 10-1 μM to MYH7 isoform, 1.00 μM to MYH2 isoform, and no …
Date: August 2020
Creator: Aboonasrshiraz, Negar
Object Type: Thesis or Dissertation
System: The UNT Digital Library

The Impact of Invasive Salmonids on Ecosystem Functioning in South America's Sub-Antarctic Inland and Marine Waters

Invasions from coho salmon were first reported in the Cape Horn Biosphere Reserve (CHBR) in 2019 which is the most southern distribution registered to date. The CHBR is known for its high number of endemic species and unique biodiversity, such as the native fishes Galaxias maculatus and Aplochiton taeniatus. There are now three invasive salmonid species in the rivers of CHBR and are a potential threat to the native fish taxa. Stable isotope and gut content analysis were used to understand resource utilization by both native galaxiid and invasive salmonid taxa, as well as aquatic macroinvertebrates and riparian spiders. The natural laboratory study approach applied to this research, allowed for comparisons of differences within streams that contain conditions in which fish do not occur naturally, to sites in which high densities of invasive salmonid exist. Analysis of the trophic niche and diet in this study showed the importance of marine resource use by the native galaxiid and coho salmon juveniles supported with elevated δ15N and δ34S ratios. Diet analysis also confirmed there was the highest similarity between the coho salmon juveniles and the native fish. Altered behavior and habitat use was shown through the isotope and diet analysis for the …
Date: May 2023
Creator: Moore, Sabrina
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Inferring a Network of Horizontal Gene Flow among Prokaryotes Using Complementary Approaches

Horizontal gene transfer (HGT), a mechanism that facilitates exchange of genetic material between organisms from different lineages, has a profound impact on prokaryotic evolution. To infer HGT, we first developed a comparative genomics-based tool, APP, which can perform phyletic pattern analysis using completely sequenced genomes to identify genes are unique to a genome or have sporadic distribution in its close relatives. Performance assessment against currently available tools on a manually created 18-genome dataset and 2 benchmarking datasets revealed the superior accuracy of APP over other methods. We then utilized a parametric method to construct a gene exchange network. The composition-based method, Jenson-Shannon Codon Bias (JS-CB), groups genes into clusters based on similar codon usage bias. These clusters were analyzed using APP and examined for the enrichment HGT associated marker genes, then annotated as of native or alien origin based on these multiple lines of evidence. Intergenome clustering enabled identification of genes mobilized across alien components of the genomes (alien-alien transfer) and from native components of donor genomes to the recipient genomes (native-alien transfer). Functional classification of alien gene clusters revealed that metabolism associated genes are most frequently mobilized, in concurrence with previous reports, and additionally, a large number of genes …
Date: August 2022
Creator: Sengupta, Soham
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Influence of Hypoxia on Acute Lead Toxicity and Calcium Homeostasis in Early Life Stage Zebrafish (Danio rerio)

The purpose of this study was to investigate the effects of Pb and hypoxia co-exposure on Pb toxicity and Ca homeostasis in early life stage (ELS) zebrafish (Danio rerio). Previous evidence indicates that exposure of ELS zebrafish to hypoxia (~20% air saturation) reduces Ca uptake, likely through down-regulation of the apical epithelial Ca channel (ECaC). Considering that Pb and Ca are known antagonists and compete for uptake pathways, it was hypothesized that co-exposure of Pb with hypoxia would decrease Pb toxicity by reducing Pb uptake (likely mediated through a reduced number of ECaCs). However, it was shown that at 96 hpf, whole body accumulation of both Pb and Ca was lower at 40% air saturation compared to 100% and 20% air saturation. This result closely aligned with the 96h LC50 results which showed the highest mortality of zebrafish at 40% compared to the other air saturation levels. This suggests that toxicity is likely the result of exacerbated hypocalcemia at 40% air saturation due to both Pb competition for Ca binding to Ca uptake channels/transporters, such as ECaC, and potentially reduced expression of such channels/transporters in response to this level of hypoxia. Overall, it appears that ELS zebrafish respond differentially to …
Date: December 2021
Creator: Moghimi, Mehrnaz
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents (open access)

Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents

As antibiotic resistance has become a major global threat, the World Health Organization has urgently called scientists for alternative strategies for control of bacterial infections. Endolysin, a protein encoded by a phage gene, can degrade bacterial peptidoglycan (PG). Currently, there are three endolysin products in the clinical phase. We, thus, are interested in exploring novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using bioinformatics tools, we identified nine functional domain groups from 250 Streptomyces phages putative endolysins. NootNoot gp34 (transglycosylase; Nt34lys), Nabi gp26 (amidase; Nb26lys), Tribute gp42 (PGRP; Tb42lys), and LazerLemon gp35 (CHAP; LL35lys) were selected for experimental studies. We hypothesized that (1) the proteins of interest will have the ability to degrade PG, and (2) the proteins will be potential antimicrobial agents against ESKAPE safe relatives. The results showed that LL35lys, Nb26lys and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (400 µg/mL) can reduce PG turbidity to 32-40%. The killing assay suggested that Tb42lys possess a boarder range (Escherichia coli, Pseudomonas putida, Acinetobacter baylyi and Klebsiella aerogenes). While Nb26lys can attack Gram-negative bacteria, LL35lys can only reduce the growth of the Gram-positive strains with an MIC90 of 2 …
Date: December 2023
Creator: Maneekul, Jindanuch
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Investigating the Effects of Inhaled Diesel Exhaust Particles on Gut Microbiome, Intestinal Integrity, Systemic Inflammation, and Biomarkers of Cardiovascular Disease in Wildtype Mice

We investigated the hypothesis that exposure to inhaled diesel exhaust PM can alter the gut microbiome and intestinal integrity, thereby promoting systemic inflammatory response and early CVD risk, which are exacerbated by HF diet. Furthermore, we investigated whether the observed exposure and diet-mediated outcomes could be mitigated through probiotic treatment. We performed an exposure study on C57Bl/6 male mice, placed on either a low fat (LF) diet or a high-fat (HF) diet, and exposed via oropharyngeal aspiration to 35 μg diesel exhaust particles (DEP) suspended in 35 μl of sterile saline or sterile saline controls (CON) twice a week for four weeks. A subset of mice on HF diet were dosed with 0.3 g/day (PRO, ~7.5x108 CFU/day) of probiotic Ecologic® Barrier 849 (Winclove Probiotics) in drinking water during the course of the study. For our first aim, we investigated the alterations in the gut microbiome, measured circulating cytokines and lipopolysaccharide (LPS), and measured CVD biomarkers in the heart. Our results revealed that exposure to inhaled DEP results in gut dysbiosis characterized by expansion of the phyla Verrucomicrobia and Proteobacteria and reduction in Actinobacteria, which was exacerbated by HF diet. Probiotics mitigated the DEP-mediated expansion of Proteobacteria and re-established Actinobacteria in …
Date: December 2021
Creator: Phillippi, Danielle T.
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Investigating the Effects of Traffic-Generated Air-Pollution on the Microbiome and Immune Responses in Lungs of Wildtype Mice

There is increasing evidence indicating that exposure to air pollutants may be associated with the onset of several respiratory diseases such as allergic airway disease and chronic obstructive pulmonary disorder (COPD). Many lung diseases demonstrate an outgrowth of pathogenic bacteria belonging to the Proteobacteria phylum, and the incidence of occurrence of these diseases is higher in heavily polluted regions. Within the human body, the lungs are among the first to be exposed to the harmful effects of inhaled pollutants and microbes. Research in the past few decades have expounded on the air-pollution-induced local and systemic inflammatory responses, but the involvement of the lung microbial communities has not yet been well-characterized. Lungs were historically considered to be sterile, but recent advances have demonstrated that the lower respiratory tract is replete with a wide variety of microorganisms - both in health and disease. Recent studies show that these lung microbes may play a significant role in modulating the immune environment by inducing IgA and mucus production. Air pollutants have previously been shown to alter intestinal bacterial populations that increase susceptibility to inflammatory diseases; however, to date, the effects of traffic-generated air pollutants on the resident microbial communities on the lungs have not …
Date: December 2020
Creator: Daniel, Sarah
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Investigating the Mechanisms involved in Traffic-Generated Air Pollution: Mediated Disruption of the Blood-Brain Barrier in a Wild Type Mouse Model using a Pharmaceutical Intervention Approach

This study investigated whether oxLDL and/or angiotensin (Ang) II signaling pathways mediate traffic-generated air pollution- exposure induced alterations in blood-brain barrier (BBB) integrity and permeability in a healthy wild type (C57Bl/6) mouse model; additionally, whether these outcomes are exacerbated by a high fat-diet investigated. An environmentally relevant concentration of a mixture of vehicle engine exhaust (MVE) was used. To investigate the hypotheses, 12 wk old male C57Bl/6 mice on either a high fat (HF) or low fat (LF) diet were randomly assigned to inhalational exposure of either filtered-air (FA) or 30 µg PM/m3 diesel exhaust + 70 µg PM/m3 gasoline exhaust (MVE) for 6 hr/day for 30 days. Additionally, we examined mechanisms involved in MVE-mediated alterations BBB integrity using a novel BBB co-culture in vitro model, consisting of mouse primary cerebral vascular endothelial cells on an apical transwell and astrocytes in the basal compartment, which was treated with plasma from the mice on our exposure study. Our in vivo exposure study results showed that MVE inhalation resulted in increased circulating plasma oxLDL and Ang II, compared to FA controls. Additionally, we observed increased cerebral microvascular expression of oxLDL receptors, LOX-1 and CD-36, and Ang II receptor subtype 1 (AT1) in …
Date: August 2020
Creator: Suwannasual, Usa
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Investigating the Molecular Framesworks of Phloem-Cap Fiber Development in Cotton (Gossypium hirsutum)

The current study focuses on the vascular cambium and the reiterative formation of phloem fiber bundles in cotton stems. The role of the TDIF-PXY-WOX pathway was examined in regulating cambial activity and the differentiation of phloem fibers. A study was conducted to identify and characterize the cotton WOX family genes, focusing on WOX4 and WOX14, aiming to identify and analyze their phylogenetic relationships, tissue-specific expression profiles, functional roles, and metabolic consequences. Through a sequence analysis of the Gossypium hirsutum genome, 42 cotton loci were identified as WOX family members. GhWOX4 exhibited a close homology to 7 loci, while GhWOX14 displayed homology with 8 loci. Tissue-specific expression analysis revealed prominent expression patterns of GhWOX4 and GhWOX14 in cotton internodes and roots, suggesting their involvement in vascular tissue development. Functional studies utilizing VIGS (virus-induced gene silencing) demonstrated that the knockdown of GhWOX4 and GhWOX14 resulted in a significant reduction in stem diameter and bast fiber production. This result suggests that secondary phloem fiber development is regulated by GhWOX4 and GhWOX14 genes in cotton. Additionally, the metabolic profiling of VIGS plants revealed significant alterations in amino acids, organic acids, and sugars, with implications for primary metabolic pathways. These findings suggest that GhWOX4 and …
Date: December 2023
Creator: Kaur, Harmanpreet
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Investigating the Spatial Relationship between Suicide and Race/Ethnicity: The Case for Alternate Rate Adjustment Techniques in Medical Geography

This work explores potential distortions created by race and ethnicity on the visualization, interpretation, and understanding of the spatial distribution of suicide in the United States. Due to radically different suicide rates among racial/ethnic groups, traditional crude or age-adjusted rates may introduce statistical confounding in both linear and spatial models. Using correlation, choropleth mapping, hot spot analysis, and location-allocation modeling, this work shows how traditional methods of health system planning may unintentionally overlook elevated risk in minority-dominated areas like inner cities, the Texas/Mexico border region, and the Deep South. The final chapter introduces a simulation protocol for examining potential distortions in datasets to identify spatial and non-spatial distortions created by the underlying population composition. Methodologically, this dissertation contributes to the discourse on place context versus population composition. More generally, this research points to potential hazards to creating a more inclusive and equitable healthcare system.
Date: December 2022
Creator: Lester, Katherine Ann
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Investigation of Gene Functions in the Cyanotrophic Bacterium Pseudomonas fluorescens NCIMB 11764

Pseudomonas fluorescens NCIMB 11764 (Pf11764) is one of a group of bacteria known as cyanotrophs that exhibit the unique ability to grow on toxic cyanide as the sole nitrogen source. This ability has previously been genetically linked to a conserved cluster of seven genes (Nit1C), the signature gene (nitC) coding for a nitrilase enzyme. Nitrilases convert nitriles to ammonia and a carboxylic acid. Still, for the Pf11764 NitC enzyme (Nit11764), no in vivo substrate has been identified, and the basis of the enzyme's requirement for cyanide growth has remained unclear. Therefore, the gene was cloned and the enzyme was characterized with respect to its structure and function. These efforts resulted in the unique discovery that, aside from its nitrilase activity, Nit11764 exhibits nuclease activity towards both DNA and RNA. This ability is consistent with computer analysis of the protein providing evidence of a preponderance of amino acids with a high probability for RNA binding. A Nit11764 knock-out mutant was shown to exhibit a higher sensitivity to both cyanide (KCN) and mitomycin C, both known to induce chromosomal damage. Thus, the overall conclusion is that Nit11764, and likely the entire Nit1C gene cluster, functions as a possible repair mechanism for overcoming …
Date: May 2022
Creator: Gullapalli, Jaya Swetha
Object Type: Thesis or Dissertation
System: The UNT Digital Library
LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis (open access)

LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis

Article showing that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. The data is discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.
Date: June 9, 2021
Creator: Pyc, Michal; Gidda, Satinder K.; Seay, Damien C.; Esnay, Nicolas; Kretzschmar, Franziska K.; Cai, Yingqi et al.
Object Type: Article
System: The UNT Digital Library

Linkage of the Nitrilase-Encoding Nit1C Gene Cluster to Cyanotrophy in Acinetobacter haemolyticus

The Nit1C cluster is a conserved gene cluster of seven genes that confers bacterial growth on cyanide as the sole nitrogen source. Bacteria with this ability are referred to as cyanotrophs. To date, the linkage between Nit1C and cyanotrophy has only been demonstrated for environmental isolates but the cluster also exists in certain medically related bacteria. In this study, a nosocomial isolate, Acinetobacter haemolyticus ATCC 19194, carrying Nit1C also displayed the ability to grow on cyanide. Growth on cyanide was accompanied by the induction of the cluster as was the mere exposure of cells to cyanide. Expression of the cluster was determined by measuring the activity of the nitrilase (NitC) coded for by the cluster and by transcriptional analysis (qRT-PCR). However, a disconnect between nitC message and NitC protein was observed depending on the phase of the growth cycle, the disconnect being related to proteolytic digestion of the NitC protein. Ironically, the cluster was also discovered to be upregulated in the absence of cyanide under nitrogen starvation conditions paralleling biofilm formation. The basis of the genetic linkage to cyanotrophy is not understood but taken together with results showing that nitrogen starvation and biofilm formation are also physiologically associated with Nit1C …
Date: July 2023
Creator: Dale, Layla Momo
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Manipulation of Lipid Droplet Biogenesis for Enhanced Lipid Storage in Arabidopsis thaliana and Nicotiana benthamiana

In this study, I examined the use of mouse (Mus musculus) Fat Specific Protein 27 (FSP27) ectopically expressed in Arabidopsis thaliana and Nicotiana benthamiana as a means to increase lipid droplet (LD) presence in plant tissues. In mammalian cells, this protein induces cytoplasmic LD clustering and fusion and helps prevent breakdown of LDs contributing to the large, single LD that dominates adipocytes. When expressed in Arabidopsis thaliana and Nicotiana benthamiana, FSP27 retained its functionality and supported the accumulation of numerous and large cytoplasmic LDs, although it failed to produce the large, single LD that typifies adipose cells. FSP27 has no obvious homologs in plants, but a search for possible distant homologs in Arabidopsis returned a Tudor/PWWP/MBT protein coded for by the gene AT1G80810 which for the purposes of this study, we have called LIPID REGULATORY TUDOR DOMAIN CONTAINING GENE 1 (LRT1). As a possible homolog of FSP27, LRT1 was expected to have a positive regulatory effect on LDs in cells. Instead, a negative regulatory effect was observed in which disruption of the gene induced an accumulation of cytoplasmic LDs in non-seed tissue. A study of lrt1 mutants demonstrated that disruption this gene is the causal factor of the cytoplasmic LD …
Date: December 2021
Creator: Price, Ann Marie
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Medicago truncatula NPF1.7: Structure-Function Assessment and Potential as a Phytohormone Transporter

In Medicago truncatula, the MtNPF1.7 transporter has been shown to be essential for root morphology and nodulation development. The allelic MtNPF1.7 mutants, Mtnip-1 (A497V), Mtnip-3 (E171K), and Mtlatd (W341STOP), show altered lateral root growth and compromised legume-rhizobium symbiosis. To assess the role of a series of distinct amino acids in the transporter's function, in silico structural predictions were combined with in planta complementation of the severely defective Mtnip-1 mutant plants. The findings support hypotheses about the functional importance of the ExxE(R/K) motif including an essential role for the first glutamic acid of the motif in proton(s) and possibly substrate transport. The results also question the existence of a putative TMH4-TMH10 salt bridge, which may not form in MtNPF1.7. Results reveal that a motif conserved among MFS proteins, Motif A, is essential for function. Hypothetically, the Motif A participates in intradomain packing of transmembrane helices and stabilizing one conformation during transport. The mutated valine (A497V) in Mtnip-1 may interfere with the lateral helix. Mutating a residue (L253) on the lateral helix with reduced side chain restored Mtnip-1 function. The predicted residue (Q351) for substrate binding is not essential for protein function. To probe the possibility that MtNPF1.7 transports auxin, two heterologous …
Date: December 2022
Creator: Yu, Yao Chuan
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Metabolic Responses to Crude Oil during Very Early Development in the Zebrafish (Danio rerio)

The present study sought to determine some morphological and physiological critical windows during very early development in zebrafish exposed to crude oil. I hypothesized that exposed zebrafish would present a decrease in survival rate and body mass, and an increase in routine oxygen consumption (ṀO2), and critical oxygen tension (PCrit). To test these hypotheses, zebrafish were acutely exposed (24 h) during different days of development (1 to 6 days post-fertilization, dpf) to different concentrations of high-energy water-accommodated fractions (HEWAFs). The endpoints of survival, body mass, routine oxygen consumption, and critical oxygen partial pressure were measured at 7 dpf. Survival rate decreased based on the exposure concentration but not as a function of the day of crude oil exposure. No significant effects were found in PCrit. Body mass was reduced by the different concentrations of HEWAF, with the size of the effect varying with exposure day, with the effect strongest on when exposure occurred at 2 and 3 dpf. Oxygen consumption (ṀO2) differed significantly depending upon the day of exposure in fish exposed to crude oil. Specifically, HEWAF exposure significantly increased ṀO2 in larvae exposed at 3 dpf (9.081 µmol O2/g/h, ±0.559) versus 2 dpf (6.068 µmol O2/g/h, ±0.652) and 6 …
Date: August 2020
Creator: Vazquez Roman, Karem Nathalie
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Metacommunity Dynamics of Medium- and Large-Bodied Mammals in the LBJ National Grasslands

Using metacommunity theory, I investigated the mechanisms of meta-assemblage structure and assembly among medium- to large-bodied mammals in North Texas. Mammals were surveyed with camera-traps in thirty property units of the LBJ National Grasslands (LBJNG). In Chapter II the dispersal and environmental-control based processes in community assembly were quantified within a metacommunity context and the best-fit metacommunity structure identified. A hypothesis-driven modelling approach was used in Chapter III to determine if the patterns of species composition and site use could be explained by island biogeography theory (IBT) or the habitat amount hypothesis (HAH). Islands were defined as the LBJNG property unit or the forest patch bounded by the property unit. Forest cover was selected as the focal habitat for the HAH. Seasonal dynamics were explored in both chapters. Metacommunity structure changed with each season, resulting in quasi-nested and both quasi and idealized Gleasonian and Clementsian structures. Results indicated that the anthropogenic development is, overall, not disadvantageous for this assemblage, that community assembly receives equal contributions from spatial and environmental factors, and that the metacommunity appears to operate under the mass effects paradigm. The patterns of species composition and site use were not explained by either IBT or HAH. Likely because …
Date: May 2022
Creator: McCain, Wesley Craig Stade
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Migration Tracking, Survival, and Pairing Behavior of American Kestrels Wintering in North Central Texas (open access)

Migration Tracking, Survival, and Pairing Behavior of American Kestrels Wintering in North Central Texas

The American Kestrel (Falco sparverius) is the smallest and most abundant falcon in North America with a wide geographic range. Unfortunately, surveys have suggested that some kestrel populations have been in decline since the 1950s, though the nominal causes of this decline are unknown. Migratory movement patterns and connectivity have yet to be established for any population of migratory kestrels. In Chapter 2, I investigated methods for attaching migration trackers to kestrels. Specifically, I showed that leg-loop style harnesses may have negatively affected return rates whereas backpack harnesses did not. Based on these results, I recommend that backpack-style Teflon harnesses is the safest and most effective method for attaching tracking devices to small raptors. In Chapter 3, I quantified survivorship for kestrels wintering in north Texas to identify the timing of kestrel mortality. Notably, I found that juvenile kestrels had similar annual survival rates as adults (81.6% versus 79.5%). High overwintering survival in north Texas indicated that once kestrels arrived on their wintering grounds, they were highly likely to survive to spring migration. In Chapter 4, I investigated pairing behaviors previously undocumented in wintering kestrels. I found that winter pairing was relatively common, but more prevalent in urban environments than …
Date: December 2022
Creator: Biles, Kelsey S
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Multi-Level Effects of Oxygen Exposure in Endothermic Insects (open access)

Multi-Level Effects of Oxygen Exposure in Endothermic Insects

This dissertation examined the phenotypic plasticity of endothermic, flight and respiratory physiology in response to developmental oxygen exposure in the moth Manduca sexta. Development in both 10% O2 hypoxia and 30% O2 hyperoxia treatments were used to look at the physiological consequence on both ends of the oxygen spectrum. Hypoxic insects reached smaller sizes as adults and had longer pupation lengths than controls. Hyperoxic insects were larger at the end of the larval stage, had increased larval growth rates, but also had longer developmental larval developmental times and pupation lengths than controls. There was a decrease in both metabolic rate and thorax temperatures of hypoxic reared insects at normoxic levels. In flight trials hypoxic insects had the lowest critical flight PO2, and the hyperoxic insects had the highest PO2. There was an increase in hypoxic insect flight muscle mitochondria oxygen consumption in permeabilized fibers, but this did not translate to the isolated flight muscle mitochondria metabolic rates. Rearing oxygen level did not significantly affect mitochondrial density and size; myofibril density and size, or tracheal density and size in flight muscle. Overall, I found that higher levels of organization were more susceptible to the effects of chronic oxygen exposure and found …
Date: August 2022
Creator: Wilmsen, Sara M
Object Type: Thesis or Dissertation
System: The UNT Digital Library