Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales (open access)

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.
Date: October 24, 1997
Creator: Morea, Michael F.
System: The UNT Digital Library
Antiproton fast ignition for Inertial Confinement Fusion (open access)

Antiproton fast ignition for Inertial Confinement Fusion

With 180MJ/{micro}g, antiprotons offer the highest stored energy per unit mass of any known entity. We investigate the use of antiprotons to promote fast ignition in an ICF capsule and seek high gains with only modest compression of the main fuel. Unlike standard fast ignition where the ignition energy is supplied by an energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. In the first of two candidate fast ignition schemes, the antiproton package is delivered by a low energy external ion beam. In the second, ''autocatalytic'' scheme, the antiprotons are pre-emplaced at the center of the capsule prior to compression. In both schemes, we estimate that {approximately}3x10{sup 13} antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition in the igniter zone. In addition to obviating the need for a second energetic fast laser and vulnerable final optics, this scheme would achieve central without reliance on laser channeling through halo plasma or houlrahm debris. However, in addition to the unknowns involved in the storage and …
Date: October 24, 1997
Creator: Perkins, L.J.
System: The UNT Digital Library
Audit of environmental monitoring and health physics laboratories at the Savannah River Site (open access)

Audit of environmental monitoring and health physics laboratories at the Savannah River Site

The Environmental Monitoring and Health Physics Laboratories at the Department of Energy`s (Department) Savannah River Site are over 40 years old and are approaching the end of their useful lives. The managing and operating contractor, Westinghouse Savannah River Company (Westinghouse), and the Savannah River Operations Office (Operations Office) proposed to build two new facilities to replace them. We conducted this audit to determine whether the construction of new laboratories was the most cost-effective alternative to accomplish the site`s environmental monitoring and health physics missions.
Date: October 24, 1997
Creator: unknown
System: The UNT Digital Library
Biological Monitoring Program for East Fork Poplar Creek (open access)

Biological Monitoring Program for East Fork Poplar Creek

In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic …
Date: October 24, 1997
Creator: Adams, S. M.; Ashwood, T. L.; Beaty, T. W. & Brandt, C. C.
System: The UNT Digital Library
Development of an analysis capability for the National Transportation System (open access)

Development of an analysis capability for the National Transportation System

The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.
Date: October 24, 1997
Creator: Anson, D. & Nelson, R.
System: The UNT Digital Library
The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report (open access)

The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.
Date: October 24, 1997
Creator: unknown
System: The UNT Digital Library
Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system (open access)

Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system

This final report provides technical information on the development of a near infrared reflectance spectroscopy (NIRS) system for the analysis of alfalfa hay. The purpose of the system is to provide consistent quality for processing alfalfa stems for fuel and alfalfa leaf meal products for livestock feed. Project tasks were to: (1) develop an NIRS driven analytical system for analysis of alfalfa hay and processed alfalfa products; (2) assist in hiring a qualified NIRS technician and recommend changes in testing equipment necessary to provide accurate analysis; (3) calibrate the NIRS instrument for accurate analyses; and (4) develop prototype equipment and sampling procedures as a first step towards development of a totally automated sampling system that would rapidly sample and record incoming feedstock and outbound product. An accurate hay testing program was developed, along with calibration equations for analyzing alfalfa hay and sun-cured alfalfa pellets. A preliminary leaf steam calibration protocol was also developed. 7 refs., 11 figs., 10 tabs.
Date: October 24, 1997
Creator: unknown
System: The UNT Digital Library
Safety evaluation for packaging (onsite) SERF cask (open access)

Safety evaluation for packaging (onsite) SERF cask

This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.
Date: October 24, 1997
Creator: Edwards, W. S.
System: The UNT Digital Library
Tank 241-AP-105, cores 208, 209 and 210, analytical results for the final report (open access)

Tank 241-AP-105, cores 208, 209 and 210, analytical results for the final report

This document is the final laboratory report for Tank 241-AP-105. Push mode core segments were removed from Risers 24 and 28 between July 2, 1997, and July 14, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-AP-105 Push Mode Core Sampling and Analysis Plan (TSAP) (Hu, 1997) and Tank Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995). None of the subsamples submitted for total alpha activity (AT), differential scanning calorimetry (DSC) analysis, or total organic carbon (TOC) analysis exceeded the notification limits as stated in TSAP and DQO. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group, and are not considered in this report. Appearance and Sample Handling Two cores, each consisting of four segments, were expected from Tank 241-AP-105. Three cores were sampled, and complete cores were not obtained. TSAP states core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank. This requirement was not met for all cores. Attachment 1 illustrates subsamples generated in the laboratory for analysis and identifies their sources. …
Date: October 24, 1997
Creator: Nuzum, J. L.
System: The UNT Digital Library