Effects of vegetation on radon transport processes in soil (open access)

Effects of vegetation on radon transport processes in soil

Radon concentrations in soil gas were measured on a weekly schedule. Samples were extracted through the tubes used for measuring pressure differentials at depths of 30, 100, 180 cm. From November to March, the concentrations increase with depth and are for the most part constant over time. The situation is similar from May through August. There is a pronounced increase in the soil radon concentration in early March. This is followed by a decrease to pre March levels at 30 cm. However, at 100 and 180 cm the radon concentrations remain elevated. Attempts were made to explain this data. The average soil moisture content measured with the neutron gauge are shown in Figure 2. Also shown is a history of precipitation events. The period from November to March was relatively dry. On March 6 there was a heavy rain deposited 3 cm of water. This was followed by a snow storm that contained over 5 cm of moisture. Precipitation events during the summer months did not seem to have a large effect on the moisture profile because these rainfall events are typical of short duration with a large amount of runoff. Other soil parameters and meteorological data were analyzed in …
Date: February 1991
Creator: Borak, T.B.
System: The UNT Digital Library
Effects of vegetation on radon transport processes in soil. Progress report, November 1, 1989--October 31, 1990 (open access)

Effects of vegetation on radon transport processes in soil. Progress report, November 1, 1989--October 31, 1990

Radon concentrations in soil gas were measured on a weekly schedule. Samples were extracted through the tubes used for measuring pressure differentials at depths of 30, 100, 180 cm. From November to March, the concentrations increase with depth and are for the most part constant over time. The situation is similar from May through August. There is a pronounced increase in the soil radon concentration in early March. This is followed by a decrease to pre March levels at 30 cm. However, at 100 and 180 cm the radon concentrations remain elevated. Attempts were made to explain this data. The average soil moisture content measured with the neutron gauge are shown in Figure 2. Also shown is a history of precipitation events. The period from November to March was relatively dry. On March 6 there was a heavy rain deposited 3 cm of water. This was followed by a snow storm that contained over 5 cm of moisture. Precipitation events during the summer months did not seem to have a large effect on the moisture profile because these rainfall events are typical of short duration with a large amount of runoff. Other soil parameters and meteorological data were analyzed in …
Date: February 1991
Creator: Borak, T. B.
System: The UNT Digital Library