A 2D electrostatic PIC code for the Mark III Hypercube (open access)

A 2D electrostatic PIC code for the Mark III Hypercube

We have implemented a 2D electrostastic plasma particle in cell (PIC) simulation code on the Caltech/JPL Mark IIIfp Hypercube. The code simulates plasma effects by evolving in time the trajectories of thousands to millions of charged particles subject to their self-consistent fields. Each particle`s position and velocity is advanced in time using a leap frog method for integrating Newton`s equations of motion in electric and magnetic fields. The electric field due to these moving charged particles is calculated on a spatial grid at each time by solving Poisson`s equation in Fourier space. These two tasks represent the largest part of the computation. To obtain efficient operation on a distributed memory parallel computer, we are using the General Concurrent PIC (GCPIC) algorithm previously developed for a 1D parallel PIC code.
Date: December 31, 1990
Creator: Ferraro, R. D.; Liewer, P. C. & Decyk, V. K.
Object Type: Article
System: The UNT Digital Library
Activated transport in AMTEC electrodes (open access)

Activated transport in AMTEC electrodes

Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and …
Date: July 1, 1992
Creator: Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O`Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Activated transport in AMTEC electrodes (open access)

Activated transport in AMTEC electrodes

Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and …
Date: January 1, 1992
Creator: Williams, R.M.; Jeffries-Nakamura, B.; Ryan, M.A.; Underwood, M.L.; O'Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Advanced subsystems development. Second semi-annual progress report, April 1--October 1, 1978 (open access)

Advanced subsystems development. Second semi-annual progress report, April 1--October 1, 1978

The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15-kWe Stirling-cycle engine/alternator with constant power output; (2) 10-meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800/sup 0/C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability. The present emphasis for achieving cost reduction goals centers on improving conversion efficiency and reducing the cost of key components.
Date: November 15, 1978
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter) (open access)

Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE), the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.
Date: January 1, 1991
Creator: Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.; Ryan, M.A.; O'Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter) (open access)

Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double_prime} alumina solid electrolyte (BASE), the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.
Date: December 31, 1991
Creator: Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Ryan, M. A.; O`Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process] (open access)

Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process]

This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.
Date: June 1, 1981
Creator: McCarthy, J.; Ferrall, J.; Charng, T. & Houseman, J.
Object Type: Report
System: The UNT Digital Library
Civilian and military missions SP-100 preliminary user requirements (open access)

Civilian and military missions SP-100 preliminary user requirements

This document defines the top level requirements of potential users of a space based nuclear electric power supply. This provides the SP-100 Project and information required to design the modular (10-1000 KWe) space power systems to meet the needs of most potential users.
Date: June 29, 1987
Creator: unknown
Object Type: Report
System: The UNT Digital Library
The comet Giacobini-Zinner magnetotail: Axial stresses and inferred near-nucleus properties (open access)

The comet Giacobini-Zinner magnetotail: Axial stresses and inferred near-nucleus properties

Utilizing the electron and magnetic field data from the ICE tail traversal of Comet Giacobini-Zinner along with the MHD equations, we have developed a steady state, stress balance model of the cometary magnetotail. With it we infer many important but unmeasured ion properties within the G-Z magnetotail both at ICE and upstream at the average point along each streamline where cometary ions are picked-up. The derived tailward ion flow speed at ICE is quite constant at approx.-20 to -30 km/sec across the entire tail. The flow velocity, ion temperature, density, and ion source rates upstream from the lobes (current sheet) at the average pickup locations are approx.-75 km/sec (approx.-12), approx.4 x 10/sup 6/ K (approx.1 x 10/sup 5/), approx.20 /cm/sup 3/ (approx.400), and approx..15 /cm/sup 3//sec (approx.3.6). Gradients in the plasma properties between these two regions are quire strong. Implications of our inferred plasma properties for the near-nucleus region and for cometary magnetotail formation are examined. 9 refs., 1 fig.
Date: October 1, 1986
Creator: McComas, D. J.; Gosling, J. T.; Bame, S. J.; Slavin, J. A.; Smith, E. J. & Steinberg, J. L.
Object Type: Article
System: The UNT Digital Library
Cost of energy from utility-owned solar electric systems. A required revenue method for ERDA/EPRI evaluations (open access)

Cost of energy from utility-owned solar electric systems. A required revenue method for ERDA/EPRI evaluations

This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation and maintenance, and the financial structure and tax environment of the utility.
Date: June 1, 1976
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Design considerations for a fiber optic communications network for power systems (open access)

Design considerations for a fiber optic communications network for power systems

The design of a fiber optic communication network for monitoring and control in power systems is discussed. It is shown that by appropriate choice of protocols, a fault-tolerant system can be built that operates in any arbitrary configuration. Since the network is based on fiber optics, it can be made fast enough for substation monitoring and control. In this application, a relatively small number of cables is required to implement a high reliability system. The network can also be used for distribution automation. In this application the network is required to reach all parts of the power system, and the fiber cable itself becomes a significant fraction of the cost of communications. However, since many applications can be supported at once, the cost per function can be reasonable.
Date: August 1, 1993
Creator: Kirkham, H.; Johnston, A. R. & Allen, G. D.
Object Type: Article
System: The UNT Digital Library
Development of alternative oxygen production source using a zirconia solid electrolyte membrane (open access)

Development of alternative oxygen production source using a zirconia solid electrolyte membrane

The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)
Date: August 1, 1990
Creator: Suitor, J. W.; Clark, D. J. & Losey, R. W.
Object Type: Report
System: The UNT Digital Library
Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report (open access)

Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report

The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)
Date: August 1, 1990
Creator: Suitor, J. W.; Clark, D. J. & Losey, R. W.
Object Type: Report
System: The UNT Digital Library
Development of Bypassed Oil Reserves Using Behind Casing Resistivity Measurements (open access)

Development of Bypassed Oil Reserves Using Behind Casing Resistivity Measurements

Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased …
Date: April 2, 2006
Creator: Conner, Michael G. & Blesener, Jeffrey A.
Object Type: Report
System: The UNT Digital Library
Direct Conversion Technology (open access)

Direct Conversion Technology

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)
Date: July 1, 1992
Creator: Back, L.H.; Fabris, G. & Ryan, M.A.
Object Type: Report
System: The UNT Digital Library
Direct conversion technology (open access)

Direct conversion technology

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.
Date: January 7, 1992
Creator: Massier, P.F.; Back, L.H.; Ryan, M.A. & Fabris, G.
Object Type: Report
System: The UNT Digital Library
Direct conversion technology: Annual summary report CY 1988 (open access)

Direct conversion technology: Annual summary report CY 1988

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.
Date: December 1, 1988
Creator: Massier, P. F.; Bankston, C. P.; Fabris, G. & Kirol, L. D.
Object Type: Report
System: The UNT Digital Library
Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991 (open access)

Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.
Date: January 7, 1992
Creator: Massier, P. F.; Back, L. H.; Ryan, M. A. & Fabris, G.
Object Type: Report
System: The UNT Digital Library
Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992 (open access)

Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)
Date: July 1, 1992
Creator: Back, L. H.; Fabris, G. & Ryan, M. A.
Object Type: Report
System: The UNT Digital Library
Dual arm master controller concept (open access)

Dual arm master controller concept

The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.
Date: January 1, 1984
Creator: Kuban, D.P. & Perkins, G.S.
Object Type: Article
System: The UNT Digital Library
Dual arm master controller development (open access)

Dual arm master controller development

The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab.
Date: January 1, 1985
Creator: Kuban, D. P. & Perkins, G. S.
Object Type: Article
System: The UNT Digital Library
Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube (open access)

Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube

Dynamic load balancing has been implemented in a concurrent one-dimensional electromagnetic plasma particle-in-cell (PIC) simulation code using a method which adds very little overhead to the parallel code. In PIC codes, the orbits of many interacting plasma electrons and ions are followed as an initial value problem as the particles move in electromagnetic fields calculated self-consistently from the particle motions. The code was implemented using the GCPIC algorithm in which the particles are divided among processors by partitioning the spatial domain of the simulation. The problem is load-balanced by partitioning the spatial domain so that each partition has approximately the same number of particles. During the simulation, the partitions are dynamically recreated as the spatial distribution of the particles changes in order to maintain processor load balance.
Date: December 31, 1990
Creator: Liewer, P. C.; Leaver, E. W.; Decyk, V. K. & Dawson, J. M.
Object Type: Article
System: The UNT Digital Library
Efficiency of an AMTEC recirculating test cell, experiments and projections (open access)

Efficiency of an AMTEC recirculating test cell, experiments and projections

The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15% to 35% thermal to electric conversion efficiencies, and one experiment has demonstrated 19% efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2% early in cell life and 9.7% after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10%. Second, the cell thermal performance could be improved. Efficiencies greater than 14% could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies …
Date: May 1, 1992
Creator: Underwood, M. L.; O`Connor, D.; Williams, R. M.; Jeffries-Nakamura, B. & Ryan, M. A.
Object Type: Article
System: The UNT Digital Library
Electrical characterization of electrophoretically coated aluminum samples for photovoltaic concentrator application (open access)

Electrical characterization of electrophoretically coated aluminum samples for photovoltaic concentrator application

The practicality of using a thin-film styrene/acrylate copolymer electrophoretic coating to isolate concentrator cells electrically from their surroundings in a photovoltaic concentrator module is assessed. Only the electrical isolation problem was investigated. The approach was to subject various types of EP-coated aluminum specimens to electrical stress testing and to aging tests while monitoring coating electrical resistivity properties. It was determined that, in general, longer processing times--i.e., thicker electrophoretic layers--resulted in better voltage-withstand properties. In particular, a two-minute processing time seemed sufficient to provide the electrical isolation required in photovoltaic concentrator application applications. Even though electrophoretic coatings did not seem to fill voids in porous-anodized aluminum substrates, breakdown voltages generally exceeded hi-pot pass-fail voltage levels with a comfortable margin. 6 refs, 11 figs, 5 tabs.
Date: October 1, 1992
Creator: Sugimura, R. S.; Mon, G. R. & Ross, R. G. Jr.
Object Type: Report
System: The UNT Digital Library