27Al and 1H Solid State NMR Studies Show Evidence of TiAl3 and TiH2 in Ti-doped NaAlH4 (open access)

27Al and 1H Solid State NMR Studies Show Evidence of TiAl3 and TiH2 in Ti-doped NaAlH4

Previous X-ray Diffraction (XRD) and Nuclear Magnetic Resonance (NMR) studies on Ti-doped NaAlH{sub 4} revealed the reaction products of two heavily doped (33.3 at.%) samples that were solvent-mixed and mechanically-milled. This investigation revealed that nano-crystalline or amorphous Al{sub 2}O{sub 3} forms from the possible coordination of aluminum with oxygen atom of the furan ring system from added tetrahydrofuran (THF) in the solvent-mixed sample, and that TiAl{sub 3} forms in mechanically-milled samples. The present paper provides a more sophisticated NMR investigation of the these materials. On heavily doped (33.3 at.%) solvent-mixed samples, {sup 27}Al Magic Angle Spinning (MAS) NMR {sup 27}Al multiple quantum MAS (MQMAS) indicates the presence of an oxide layer of Al{sub 2}O{sub 3} on the surfaces of potentially bulk nanocrystalline Ti, nanocrystalline TiAl{sub 3}, and/or metallic aluminum. The {sup 1}H MAS NMR data also indicate the possible coordination of aluminum with the oxygen atom in the THF. On heavily doped samples that were mechanically milled, {sup 27}Al MAS NMR and static NMR confirms the presence of TiAl{sub 3}. In addition, the {sup 1}H MAS NMR and {sup 1}H spin-lattice relaxation (T{sub 1}) measurements are consistent with the presence of TiH{sub 2}. These results are in agreement with recent …
Date: May 26, 2005
Creator: Herberg, J; Maxwell, R & Majzoub, E
Object Type: Article
System: The UNT Digital Library
4th-International Symposium on Ultrafast Surface Science - Final Report (open access)

4th-International Symposium on Ultrafast Surface Science - Final Report

The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.
Date: January 26, 2005
Creator: Petek, Hrvoje
Object Type: Report
System: The UNT Digital Library
Advanced Materials for PEM-Based Fuel Cell Systems (open access)

Advanced Materials for PEM-Based Fuel Cell Systems

Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene …
Date: October 26, 2005
Creator: McGrath, James E.; Baird, Donald G. & Spakovsky, Michael von
Object Type: Report
System: The UNT Digital Library
Advanced Materials for PEM-Based Fuel Cell Systems (open access)

Advanced Materials for PEM-Based Fuel Cell Systems

Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) …
Date: October 26, 2005
Creator: McGrath, James E.
Object Type: Report
System: The UNT Digital Library
Advances in Light-Front QCD and New Perspectives for QCD from AdS/CFT (open access)

Advances in Light-Front QCD and New Perspectives for QCD from AdS/CFT

The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a Fock space built on a trivial vacuum. The AdS/CFT correspondence has led to important insights into the properties of quantum chromodynamics even though QCD is a broken conformal theory. We have recently shown how a model based on a truncated AdS space can be used to obtain the hadronic spectrum of q{bar q}, qqq and gg bound states, as well as their respective light-front wavefunctions. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state, including orbital angular momentum excitations. The predicted mass spectrum is linear M {proportional_to} L at high orbital angular momentum, in contrast to the quadratic dependence M{sup 2}/L found in the description of spinning strings. Since only one parameter, the QCD scale {Lambda}{sub QCD}, is introduced, the agreement with the pattern of physical states is remarkable. In particular, the ratio of {Delta} to nucleon trajectories is determined by the ratio of zeros of Bessel functions. As a specific application of QCD dynamics from AdS/CFT duality, …
Date: October 26, 2005
Creator: Brodsky, Stanley J. & de Teramond, Guy F.
Object Type: Article
System: The UNT Digital Library
An Agent that can Prohibit Microbial Development and Infection (open access)

An Agent that can Prohibit Microbial Development and Infection

We have developed a process that makes use of double-stranded DNA:RNA hybrids to inhibit specific, targeted genetic activity completely within a cell. This process can be used in both human and bacterial cells. The agent that produces this effect can be inserted into a cell and remain quiescent for a considerable period of time without affecting cellular processes, until the gene against which it is targeted is induced. At this time the agent becomes effective, silencing the genetic response without affecting the host cell in any other way. When given as an anti-infective, this process may have significant use as an anti-bacterial, anti-viral agent. Our objective with this proposal is to develop the siHybrid concept sufficiently that it can be used as both an antibiotic and an antiviral agent.
Date: January 26, 2005
Creator: Christian, A
Object Type: Report
System: The UNT Digital Library
Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production Quarterly Report: January-March 2005 (open access)

Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production Quarterly Report: January-March 2005

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub …
Date: April 26, 2005
Creator: Nuttall, Brandon C.
Object Type: Report
System: The UNT Digital Library
ANALYSIS OF DUST DELIQUESCENCE FOR FEP SCREENING (open access)

ANALYSIS OF DUST DELIQUESCENCE FOR FEP SCREENING

The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA). Preparation of this report, and supporting laboratory studies and calculations, were performed as part of the planned effort in Work Package AEBM21, as implemented in ''Technical Work Plan for: Screening Evaluation for Dust Deliquescence and Localized Corrosion'' (BSC 2004 [DIRS 172804]), by Bechtel SAIC Company, LLC, and staff from three national laboratories: Sandia National Laboratories, Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley National Laboratory (LBNL). The analysis and conclusions presented in this report are quality affecting, as determined in the controlling technical work plan. A summary of background information, based on work that was not performed under a quality assurance program, is provided as Appendix E. In this instance, the use of unqualified information is provided for transparency and corroboration only, and is clearly separated from uses of qualified information. Thus, …
Date: August 26, 2005
Creator: Bryan, C.
Object Type: Report
System: The UNT Digital Library
Analysis of Laser Acceleration in a Semi-infinite Space as Inverse Transition Radiation (open access)

Analysis of Laser Acceleration in a Semi-infinite Space as Inverse Transition Radiation

This article calculates the energy gain of a single relativistic electron interacting with a single gaussian beam that is terminated by a metallic reflector at normal incidence by two different methods: the electric field integral along the path of the electron, and the overlap integral of the transition radiation pattern from the conductive foil with the laser beam. It is shown that for this instance the two calculation methods yield the same expression for the expected energy change of the electron.
Date: October 26, 2005
Creator: Plettner, T.
Object Type: Report
System: The UNT Digital Library
Anisotropic intermediate valence in Yb2M3Ga9 (M = Rh, Ir) (open access)

Anisotropic intermediate valence in Yb2M3Ga9 (M = Rh, Ir)

The intermediate valence compounds Yb{sub 2}M{sub 3}Ga{sub 9} (M = Rh, Ir) exhibit an anisotropic magnetic susceptibility. We report measurements of the temperature dependence of the 4f occupation number, n{sub f}(T), for Yb{sub 2}M{sub 3}Ga{sub 9} as well as the magnetic inelastic neutron scattering spectrum S{sub mag}({Delta}E) at 12 and 300 K for Yb{sub 2}Rh{sub 3}Ga{sub 9}. Both n{sub f}(T) and S{sub mag}({Delta}E) were calculated for the Anderson impurity model with crystal field terms within an approach based on the non-crossing approximation. These results corroborate the importance of crystal field effects in these materials; they also suggest that Anderson lattice effects are important to the physics of Yb{sub 2}M{sub 3}Ga{sub 9}.
Date: April 26, 2005
Creator: Christianson, A. D.; Lawrence, J. M.; Lobos, A. M.; Aligia, A. A.; Bauer, E. D.; Moreno, N. O. et al.
Object Type: Article
System: The UNT Digital Library
Anisotropic Shock Propagation in Single Crystals (open access)

Anisotropic Shock Propagation in Single Crystals

Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.
Date: May 26, 2005
Creator: Eggert, J.; Hicks, D.; Celliers, P.; Bradley, D.; Cox, J.; Unites, W. et al.
Object Type: Article
System: The UNT Digital Library
An Approach Towards a Long-life, Microwave-assisted H- Ion Soucrefor Proton Drivers (open access)

An Approach Towards a Long-life, Microwave-assisted H- Ion Soucrefor Proton Drivers

This paper reports on experiments aimed at developing a new high-intensity H{sup -} ion source with long lifetime whose concept had recently been introduced. Starting from the motivation for this effort, several steps of the earlier development work are recapitulated, and the performance of the latest design variant is discussed in detail. The basic concept consists in coupling an ECR ion source to a standard SNS multi-cusp H{sup -} ion source that is driven by pulsed dc, rather than rf, power. As a key result, an electron beam of 1.5 A current has been extracted from the ECR discharge operating at 1.9 kW c. w. power, and a maximum discharge current of 17.5 A was achieved in the H{sup -} ion source. Production of H{sup -} ions, however could not yet been demonstrated in the one, preliminary, experiment conducted so far. The paper concludes by outlining further envisaged development steps for the plasma generator and an expansion towards a novel extraction system.
Date: October 26, 2005
Creator: Keller, R.; Regis, M.; Wallig, J.; Hahto, S.; Monroy, M.; Ratti, A. et al.
Object Type: Article
System: The UNT Digital Library
Atmospheric Dispersion Coefficients and Radiological and Toxicological Exposure Methodology for use in Tank Farms (open access)

Atmospheric Dispersion Coefficients and Radiological and Toxicological Exposure Methodology for use in Tank Farms

This report presents the atmospheric dispersion coefficients used in Tank Farm safety analyses. The basic equations for calculating radiological and toxicological exposures are also included. This revision deals with the atmospheric dispersion coefficients used for the accident analyses for the Contact- Handled Transuranic/ Mixed (CH- TRUM) Waste Packaging Unit (WPU) operations.
Date: September 26, 2005
Creator: Kozlowski, S. D.
Object Type: Report
System: The UNT Digital Library
The Benjamin Shock Tube Problem in KULL (open access)

The Benjamin Shock Tube Problem in KULL

The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on a simple example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) without the complication of reshock. The experiment by Benjamin et al. involving a Mach 1.21 incident shock striking an air / SF6 interface, is a good one to model and understand before moving onto shock tubes that follow the growth of the turbulent mixing zone from first shock through well after reshock.
Date: August 26, 2005
Creator: Ulitsky, M
Object Type: Report
System: The UNT Digital Library
Biotic Processes Regulating the Carbon Balance of Desert Ecosystems (open access)

Biotic Processes Regulating the Carbon Balance of Desert Ecosystems

This project provided the funding to operate and maintain the Nevada Desert FACE Facility. This support funds the CO{sub 2}, system repairs and maintenance, basic physical and biological site information, and personnel that are essential for the experiment to continue. They have continued to assess the effects of elevated CO{sub 2} on three key processes: (1) leaf- to plant-level responses of desert vegetation to elevated atmospheric CO{sub 2}; (2) ecosystem-level responses; and (3) integration of plant and ecosystem processes to understand carbon balance of deserts. The focus is the seminal interactions among atmospheric CO{sub 2}, water, and nitrogen that drive desert responses to elevated CO{sub 2} and explicitly address processes that occur across scales (biological, spatial, and temporal).
Date: July 26, 2005
Creator: Nowak, R. S.; Arnone, J.; Fenstermaker, L. & Smith, and S. D.
Object Type: Report
System: The UNT Digital Library
Bitmap Indices for Fast End-User Physics Analysis in ROOT (open access)

Bitmap Indices for Fast End-User Physics Analysis in ROOT

Most physics analysis jobs involve multiple selection steps on the input data. These selection steps are called ''cuts'' or ''queries''. A common strategy to implement these queries is to read all input data from files and then process the queries in memory. In many applications the number of variables used to define these queries is a relative small portion of the overall data set therefore reading all variables into memory takes unnecessarily long time. In this paper we describe an integration effort that can significantly reduce this unnecessary reading by using an efficient compressed bitmap index technology. The primary advantage of this index is that it can process arbitrary combinations of queries very efficiently, while most other indexing technologies suffer from the ''curse of dimensionality'' as the number of queries increases. By integrating this index technology with the ROOT analysis framework, the end-users can benefit from the added efficiency without having to modify their analysis programs. Our performance results show that for multi-dimensional queries, bitmap indices outperform the traditional analysis method up to a factor of 10.
Date: July 26, 2005
Creator: Stockinger, Kurt; Wu, Kesheng; Brun, Rene & Canal, Philippe
Object Type: Article
System: The UNT Digital Library
THE BNL SUPER NEUTRINO BEAM PROJECT. (open access)

THE BNL SUPER NEUTRINO BEAM PROJECT.

BNL plans to create a very long base line super neutrino beam facility by upgrading the AGS from the current 0.14 MW to 1.0 MW and beyond. The proposed facility consists of three major components. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade of the AGS itself for higher intensity and repetition rate, and finally is the target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS from 0.3 Hz to 2.5 Hz, with moderate increase from the intensity. The accelerator design considerations to achieve high intensity and low losses for the new linac and the AGS will be presented. The target and horn design for high power operation and easy maintenance will also be covered.
Date: January 26, 2005
Creator: Raparia, D.
Object Type: Article
System: The UNT Digital Library
Cache-Oblivious Mesh Layouts (open access)

Cache-Oblivious Mesh Layouts

We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications.
Date: April 26, 2005
Creator: Yoon, S.; Lindstrom, P.; Pascucci, V. & Manocha, D.
Object Type: Article
System: The UNT Digital Library
Calculation of Tin Atomic Data and Plasma Properties. (open access)

Calculation of Tin Atomic Data and Plasma Properties.

This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.
Date: August 26, 2005
Creator: Morozov, V.; Tolkach, V. & Hassanein, A.
Object Type: Report
System: The UNT Digital Library
Chemical Environment at Waste Package Surfaces in a High-Level Radioactive Waste Repository (open access)

Chemical Environment at Waste Package Surfaces in a High-Level Radioactive Waste Repository

We have conducted a series of deliquescence, boiling point, chemical transformation, and evaporation experiments to determine the composition of waters likely to contact waste package surfaces over the thermal history of the repository as it heats up and cools back down to ambient conditions. In the above-boiling period, brines will be characterized by high nitrate to chloride ratios that are stable to higher temperatures than previously predicted. This is clearly shown for the NaCl-KNO{sub 3} salt system in the deliquescence and boiling point experiments in this report. Our results show that additional thermodynamic data are needed in nitrate systems to accurately predict brine stability and composition due to salt deliquescence in dust deposited on waste package surfaces. Current YMP models capture dry-out conditions but not composition for NaCl-KNO{sub 3} brines, and they fail to predict dry-out conditions for NaCl-KNO{sub 3}-NaNO{sub 3} brines. Boiling point and deliquescence experiments are needed in NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} systems to directly determine dry-out conditions and composition, because these salt mixtures are also predicted to control brine composition in the above-boiling period. Corrosion experiments are needed in high temperature and high NO{sub 3}:Cl brines to determine if nitrate inhibits corrosion …
Date: May 26, 2005
Creator: Carroll, S; Alai, M; Craig, L; Gdowski, G; Hailey, P; Nguyen, Q A et al.
Object Type: Report
System: The UNT Digital Library
Cherenkov Radiation from Jets in Heavy-ion Collisions (open access)

Cherenkov Radiation from Jets in Heavy-ion Collisions

The possibility of Cherenkov-like gluon bremsstrahlung in dense matter is studied. We point out that the occurrence of Cherenkov radiation in dense matter is sensitive to the presence of partonic bound states. This is illustrated by a calculation of the dispersion relation of a massless particle in a simple model in which it couples to two different massive resonance states. We further argue that detailed spectroscopy of jet correlations can directly probe the index of refraction of this matter, which in turn will provide information about the mass scale of these partonic bound states.
Date: July 26, 2005
Creator: Koch, Volker; Majumder, Abhijit & Wang, Xin-Nian
Object Type: Article
System: The UNT Digital Library
Cleanup Verification Package for the 300-18 Waste Site (open access)

Cleanup Verification Package for the 300-18 Waste Site

This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete.
Date: August 26, 2005
Creator: Capron, J. M.
Object Type: Report
System: The UNT Digital Library
Cleanup Verification Package for the 600-47 Waste Site (open access)

Cleanup Verification Package for the 600-47 Waste Site

This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris.
Date: August 26, 2005
Creator: Cutlip, M. J.
Object Type: Report
System: The UNT Digital Library
Closure and Sealing Design Calculation (open access)

Closure and Sealing Design Calculation

The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation …
Date: August 26, 2005
Creator: Lahnalampi, T. & Case, J.
Object Type: Report
System: The UNT Digital Library