States

Language

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat (open access)

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and …
Date: December 19, 2011
Creator: Wang, Dexin
Object Type: Report
System: The UNT Digital Library
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat (open access)

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and …
Date: December 19, 2011
Creator: Wang, Dexin
Object Type: Report
System: The UNT Digital Library
Annual Report of Groundwater Monitoring at Everest, Kansas in 2011. (open access)

Annual Report of Groundwater Monitoring at Everest, Kansas in 2011.

Everest, Kansas, is a small rural community (population approximately 300) located in the southeast corner of Brown County, in the northeastern corner of Kansas. Carbon tetrachloride and chloroform contamination in groundwater at Everest was initially identified in 1997 as a result of testing performed under the Commodity Credit Corporation/U.S. Department of Agriculture (CCC/USDA) private well sampling program conducted by the Kansas Department of Health and Environment (KDHE). The KDHE collected samples from seven private wells in and near Everest. Carbon tetrachloride and chloroform were found in only one of the wells, the Donnie Nigh domestic well (owned at that time by Tim Gale), approximately 3/8 mi northwest of the former Everest CCC/USDA facility. Carbon tetrachloride and chloroform were detected at 121 {mu}g/L and 4 {mu}g/L, respectively. Nitrate was found at 12.62 mg/L. The USDA subsequently connected the Nigh residence to the Everest public water supply system. The findings of the 2011 monitoring at Everest support the following conclusions: (1) Measurements of groundwater levels obtained manually during annual monitoring in 2009-2011 (and through the use of automatic recorders in 2002-2010) have consistently indicated an initial direction of groundwater flow from the former CCC/USDA facility to the north-northwest and toward the Nigh …
Date: December 19, 2011
Creator: LaFreniere, L. M.
Object Type: Report
System: The UNT Digital Library
International Low Level Waste Disposal Practices and Facilities (open access)

International Low Level Waste Disposal Practices and Facilities

The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste …
Date: December 19, 2011
Creator: Nutt, W.M. (Nuclear Engineering Division)
Object Type: Report
System: The UNT Digital Library
Modified Magnicon for High-Gradient Accelerator R&D (open access)

Modified Magnicon for High-Gradient Accelerator R&D

Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.
Date: December 19, 2011
Creator: Hirshfield, Jay L.
Object Type: Report
System: The UNT Digital Library
National Ignition Campaign: Progress Update (open access)

National Ignition Campaign: Progress Update

None
Date: December 19, 2011
Creator: Moses, E I
Object Type: Article
System: The UNT Digital Library
Report on the September 2011 Meeting of the Next Generation Safegaurds Professional Network (open access)

Report on the September 2011 Meeting of the Next Generation Safegaurds Professional Network

The Next Generation Safeguards Professional Network (NGSPN) was established in 2009 by Oak Ridge National Laboratory targeted towards the engagement of young professionals employed in safeguards across the many national laboratories. NGSPN focuses on providing a mechanism for young safeguards professionals to connect and foster professional relationships, facilitating knowledge transfer between current safeguards experts and the next generation of experts, and acting as an entity to represent the interests of the international community of young and mid-career safeguards professionals. This is accomplished in part with a yearly meeting held at a national laboratory site. In 2011, this meeting was held at Pacific Northwest National Laboratory. This report documents the events and results of that meeting.
Date: December 19, 2011
Creator: Gitau, Ernest TN & Benz, Jacob M.
Object Type: Report
System: The UNT Digital Library
Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery (open access)

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.
Date: December 19, 2011
Creator: unknown
Object Type: Text
System: The UNT Digital Library
Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process (open access)

Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process

HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.
Date: December 19, 2011
Creator: unknown
Object Type: Text
System: The UNT Digital Library