Degree Department

Language

All of the results matching your search query require you to be a member of the UNT Community (you must be on campus or log in with university credentials for access).

Manipulation of Light-Matter Interactions in Molybdenum Disulfide (MoS2) Monolayer through Dressed Phonons (DP) and Plasmons

Access: Use of this item is restricted to the UNT Community
The performance of electrical and optical devices based on two-dimensional semiconductors (2D) such as molybdenum disulfide is critically influenced due to very poor light absorption in the atomically thin layers. In this study, the phonon mediated optical absorption and emission properties in single atomic layers of MoS2 have been investigated. The electronic transitions in MoS2 due to near-field optical interaction and the influence of interface phonons due to the dielectric substrate GaN on the relaxation of optically generated carriers will be described. The near-field interaction can be induced in the presence of metal plasmons deposited on the surface of MoS2 monolayers. A hybrid metal-semiconductor system was realized by the deposition of silver (Ag) NPs on MoS2 layer and the localized plasmon modes were selectively chosen to interact with quasiparticles such as excitons and phonons. These quasiparticles are confined within the single atomic layer of MoS2 and are stable at room temperatures due to high binding energy. The lattice vibrational modes in MoS2 can be optically excited with the pulses from a femtosecond laser. These phonon modes can be optically dressed due to near-field interaction in the hybrid Ag-MoS2 system under an optical excitation resonant to localized plasmon modes. The coherent …
Date: December 2019
Creator: Poudel, Yuba R
System: The UNT Digital Library

PAOFLOW-Aided Computational Materials Design

Access: Use of this item is restricted to the UNT Community
Functional materials are essential to human welfare and to provide foundations for emerging industries. As an alternative route to experimental materials discovery, computational materials designs are playing an increasingly significant role in the whole discovery process. In this work, we use an in-house developed python utility: PAOFLOW, which generates finite basis Hamiltonians from the projection of first principles plane-wave pseudopotential wavefunctions on pseudo atomic orbitals(PAO) for post-process calculation on various properties such as the band structures, density of states, complex dielectric constants, diffusive and anomalous spin and charge transport coefficients. In particular, we calculated the dielectric function of Sr-, Pb-, and Bi-substituted BaSnO3 over wide concentration ranges. Together with some high-throughput experimental study, our result indicates the importance of considering the mixed-valence nature and clustering effects upon substitution of BaSnO3 with Pb and Bi. We also studied two prototype ferroelectric rashba semiconductors, GeTe and SnTe, and found the spin Hall conductivity(SHC) can be large either in ferroelectric or paraelectric structure phase. Upon doping, the polar displacements in GeTe can be sustained up to a critical hole concentration while the tiny distortions in SnTe vanish at a minimal level of doping. Moreover, we investigated the sensitivity of two dimensional group-IV monochalcogenides …
Date: December 2019
Creator: Wang, Haihang
System: The UNT Digital Library