Degree Department

Language

Computational Development of Trimetallic Cyclotrimers for Gas-Filtration Applications through Non-Covalent Interactions

Access: Use of this item is restricted to the UNT Community
Photophysical properties of an array of various polyaromatic hydrocarbons were benchmarked with B3LYP, M06 and B97D methods coupled with Pople and CEP-31G(d) basis sets. Results from the benchmark show the importance of diffuse basis sets when modeling the electronic properties of highly conjugated systems and provide qualitative reliable accuracy with certain levels of theory. B97D and M06 are applied to modeling pyrene adducts governed by non-covalent interactions in both gaseous and condensed states to reproduce experimental spectra. DFT calculations with both B97D and M06 functionals show qualitatively and quantitatively that pyrene dimer is a stronger π–base as compared to its monomer. Binding energies coupled with MEP, PCA and Qzz results show that the difference in π-basicity of the monomer and dimer impacts the supramolecular chemistry involved in adducts formed with super π-acidic silver cyclometallic trimer (CTC). Non-covalent interactions between coinage metal CTCs and ammonia/phosphine substrates is reported. Interactions between these substrates and the facial plane of the π-rich gold CTC reveal a novel interaction, where the typical Lewis acid/base roles are reversed for the substrates. Adducts formed through this type of interaction define typical Lewis bases like ammonia and phosphine as Lewis acids, wherein the partially positive hydrogens coordinate to …
Date: December 2019
Creator: Williams, Christopher M.
System: The UNT Digital Library
Semiconducting Aromatic Boron Carbide Films for Neutron Detection and Photovoltaic Applications (open access)

Semiconducting Aromatic Boron Carbide Films for Neutron Detection and Photovoltaic Applications

Semiconducting aromatic-boron carbide composite/alloyed films formed by plasma enhanced chemical vapor deposition from carborane and aromatic precursors have been demonstrated to be excellent detectors for thermal neutrons because of the large 10B cross section. The electronic properties of these films derived from XPS show that the properties of boron carbide can be tuned by co-deposition of aromatic compounds and carborane. Aromatic doping results in narrower indirect band gaps (1.1 - 1.7 eV vs ~3 eV for orthocarborane-derived boron carbide without aromatics) and average charge transport lifetimes (as long as 2.5 ms for benzene-orthocarborane and 1.5 - 2.5 ms for indole-orthocarborane) that are superior to those of boron carbide (35 µs). The films also show enhanced electron-hole separation that is also superior to those of boron carbide where the states at the top of the valence band is made of aromatic components while states at the bottom of the conduction band is a combination of aromatic and carborane moeities. These properties result in greatly enhanced (~850%) charge collection, relative to films without aromatic content, in thermal neutron exposures at zero-bias, and are gamma-blind. Such films are therefore excellent candidates for zero-bias neutron detector applications. These properties also show little variation with …
Date: December 2019
Creator: Oyelade, Adeola O
System: The UNT Digital Library
Synthesis and Characterization of β-Functionalized π-Extended Porphyrins (open access)

Synthesis and Characterization of β-Functionalized π-Extended Porphyrins

Porphyrins with extended π-electronic networks are promising candidates for a wide range of applications from medicine to nanotechnology owing to their unique optical and electronic properties. This dissertation is focused on synthesis, characterization and application of β-functionalized π-extended porphyrins. This dissertation is comprised of seven chapters. Chapter 1 focuses on the importance and objective of this work. Chapter 2 gives brief introduction to porphyrins and π-extended porphyrins. In chapter 3, a class of β-functionalized linear push-pull zinc dibenzoporphyrins YH1-YH3 were designed, synthesized, and utilized as light harvesters for DSSCs. In chapter 4, in order to further enhance the photovoltaic performance of β-functionalized benzoporphyrin dyes based DSSCs, a new class of push-pull dibenzoporphyrins YH4-YH7 bearing the phenylethynyl bridge was designed, synthesized and utilized as light harvesters for DSSCs. In chapter 5, in order to solve the photodegradation problem associated with YH7, a new series of push-pull dibenzoporphyrins YH8-YH10 bearing different diarylamino push groups was designed and synthesized. This class of push-pull porphyrins shows improved photostability and enhanced DSSC performance. In chapter 6, a new pentacene-fused diporphyrin with high stability and solubility was prepared and characterized. Chapter 7 includes the summary of this dissertation and describes possible future work.
Date: December 2019
Creator: Hu, Yi
System: The UNT Digital Library
Spectral, Electrochemical, Electron Transfer, and Photoelectrochemical Studies of Tetrapyrrole Derived Supramolecular Systems (open access)

Spectral, Electrochemical, Electron Transfer, and Photoelectrochemical Studies of Tetrapyrrole Derived Supramolecular Systems

Energy- and electron-transfer processes in molecular and supramolecular donor-acceptor systems are of current interest in order to develop light-energy harvesting systems through designing covalently linked donor-acceptor systems or utilizing self-assembled donor-acceptor systems. The research presented in this dissertation deals with the electrochemical, anion binding, and photochemical studies of various oxoporphyrinogen (OxPs), porphyrin, corrole, and phenothiazine systems. The first chapter provides a brief introduction to the material discussed in the subsequent chapters. The second chapter discusses the bromination of meso-tetraarylporphyrings and how that affects their electrochemical, catalytic, and other properties. Bromination of these porphyrins and oxoporphyrinogens allow the HOMO-LUMO gap to increase revealing blue-shifted absorption. Brominated OxPs and bis-crown ether OxP self-assembled with anions depending on strength of the anion and size of the binding site. The addition of crown ethers allows a cation binding site which makes a self-assembled donor-acceptor supramolecular system.Chapters 5 and 6 discuss a series of donor-acceptor conjugates based on zinc porphyrin as the electron donor and copper(III) corrole as the electron acceptor. These studies illustrate the importance of copper(III) corrole as a potent electron acceptor for the construction of energy harvesting model compounds, and constitute the first definitive proof of charge separation in ZnP-CuIIIC systems.Chapter 7 …
Date: December 2019
Creator: Webre, Whitney Ann
System: The UNT Digital Library
Development of an Optical Carbon Dioxide Sensor and Modeling of Metal-Metal Interactions for Sensor Applications (open access)

Development of an Optical Carbon Dioxide Sensor and Modeling of Metal-Metal Interactions for Sensor Applications

An investigation of luminescent sensing has been presented. Neutral Red, a common pH luminescent sensor, was shown to be an effective carbon dioxide sensor for the first time. Sensing experiments were performed both through fluorometric and fluorescent microscopy studies, giving rise to the possibility of carbon dioxide sensing for biological applications. Neutral Red was benchmarked against the well-established carbon dioxide sensor Pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt), HPTS. Neutral Red was shown to have improved response times and higher consistency within the sensing drift compared to HPTS. Trinuclear Au(I) complexes have previously shown to sense metal ions through changes in their luminescent properties. A computational study on d10-d10 interactions, which exist in complexes where Cu+, Ag+, and Au+ are intercalated with [Au(μ-C2,N3-ethylImidazolate)]3 in the form of both half and full sandwich adducts. Binding energies, total density plots, and Morse and Dunham analyses of potential energy surfaces are employed to better understand the metal-metal interactions and the effects of electron correlation, basis set superposition error, and dispersion of metallophilic interactions of the adduct complexes. As metal-metal interactions within these types of complexes become better understood, the tuning of trinuclear Au(I) complexes for luminescent sensing of metals becomes increasingly possible.
Date: December 2019
Creator: Ericson, Megan
System: The UNT Digital Library