Bio-Inspired Material Surfaces with Self-cleaning, Micromanipulation and Water Collection

Access: Use of this item is restricted to the UNT Community
Geckos are famous for the skill of switchable adhesion that they use to stick on various surface while keep their fingers super clean. In the dissertation, a unique mechanism was discovered to explain gecko self-cleaning phenomena. Using atomic force microscopy (AFM), we managed to compare the microparticle-substrate adhesion and the microparticle-seta adhesion with a single seta bonded to the AFM cantilever. A dynamic effect was approved that high pulling-off speed could increase the microparticle-substrate adhesion and thus the self-cleaning appears at high moving speed. Based on the self-cleaning theory, a gecko-inspired N-doped graphene surface with switchable adhesion was achieved, which was designed into a bio-inspired micromanipulator with a success rate over 90%. When electrical bias was applied on this biomimetic surface, the charge concentration induced an electrical double layer (ELD) on the convex surfaces, which attracts polar water molecules to form a water bridge on it, significantly enhancing the adhesion on the wrinkled graphene surface, mimicking the capillary force on beetle feet. Therefore, the bio-inspired adhesive surface can be controlled with speed, electrical bias, humidity and different material surfaces. The water attraction phenomenon on the polarized surface was further tested for the potential application of water collection and evaporation in …
Date: May 2019
Creator: Wan, Yiyang
System: The UNT Digital Library

Process-Structure-Property Relationships in Friction Stir Welded Precipitation Strengthened Aluminum Alloys

Access: Use of this item is restricted to the UNT Community
Through a series of carefully designed experiments, characterization and some modeling tools, this work is aimed at studying the role of thermal profiles on different microstructural zones and associated properties like strength and corrosion through a variation of weld parameters, thermal boundary conditions and material temper. Two different alloys belonging to the Al-Cu and Al-Cu-Li system in different temper conditions- peak aged (T8) and annealed (O) were used. A 3D-thermal pseudo mechanical (TPM) model is developed for the FSW process using heat transfer module in COMSOL Multiphysics and is based on a heat source wherein the temperature dependent yield shear stress is used for the heat generation. The precipitation and coarsening model is based on the Kampmann and Wagner theoretical framework and accounts for the competition between the various nucleation sites for both metastable and equilibrium precipitates. The model predicts different precipitate mean radius and volume fraction for the various zones in the friction stir welded material. A model for the yield strength is developed which considers contributions from different strengthening mechanisms. The predictions of the each models have been verified against experimental data and literature. At constant advance per rotation, the peak temperature decreases with a decrease in traverse …
Date: May 2019
Creator: Mondal, Barnali
System: The UNT Digital Library
Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers (open access)

Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers

This thesis describes the fabrication and characterization of two-dimensional transition dichalcogenides (2D TMDs) nanolayers for various applications in electronic and opto-electronic devices applications. In Chapter 1, crystal and optical structure of TMDs materials are introduced. Many TMDs materials reveal three structure polytypes (1T, 2H, and 3R). The important electronic properties are determined by the crystal structure of TMDs; thus, the information of crystal structure is explained. In addition, the detailed information of photon vibration and optical band gap structure from single-layer to bulk TMDs materials are introduced in this chapter. In Chapter 2, detailed information of physical properties and synthesis techniques for molybdenum disulfide (MoS2), tungsten disulfide (WS2), and molybdenum ditelluride (MoTe2) nanolayers are explained. The three representative crystal structures are trigonal prismatic (hexagonal, H), octahedral (tetragonal, T), and distorted structure (Tʹ). At room temperature, the stable structure of MoS2 and WS2 is semiconducting 2H phase, and MoTe2 can reveal both 2H (semiconducting phase) and 1Tʹ (semi-metallic phase) phases determined by the existence of strains. In addition, the pros and cons of the synthesis techniques for nanolayers are discussed. In Chapter 3, the topic of synthesized large-scale MoS2, WS2, and MoTe2 films is considered. For MoS2 and WS2 films, the …
Date: May 2019
Creator: Park, Juhong
System: The UNT Digital Library

The Effect of Processing Conditions on the Surface Morphology of Few-Layered WS2 Thin Films

Access: Use of this item is restricted to the UNT Community
Recent progress in layered transition metal dichalcogenides (TMDs) has led to various promising electronic and optoelectronic applications. However, the structure of materials plays a critical role in electronic and optoelectronic devices, and determines performance. Electronic and optoelectronic devices typically consist of multiple layers that form electrical homojunctions or heterojunctions. Therefore, in a device it can be expected that a WS2 layer may serve as the substrate for a subsequent layer in a multilayer device stack and determine how the layer grows. In transistor structures, roughness at the channel/gate dielectric interface introduces field variations and charge scattering. Therefore, understanding the relations between processing, surface morphology and properties is important. In this project, the effects of pulsed laser deposition (PLD) processing conditions on the surface morphology of few layered WS2 films were studied. WS2 films were synthesized under processing conditions that represent the extremes of surface supersaturation and kinetic energy transfer from the flux to the growing films, and evolution of the surface morphology was studied. The specific conditions were 1Hz/50mJ, 10Hz/50mJ, 1Hz/300mJ, and 10Hz/300mJ respectively. Combining AFM, XRD and Raman analyses, it was determined that deposition at 10Hz/300mJ, provided the best structural properties and surface morphology. Growth appeared to be 3D-cluster, …
Date: May 2019
Creator: Cai, Bimin
System: The UNT Digital Library

Processing-Structure-Property Relationships of Reactive Spark Plasma Sintered Boron Carbide-Titanium Diboride Composites

Access: Use of this item is restricted to the UNT Community
Sintering parameter effects on the microstructure of boron carbide and boron carbide/titanium diboride composites are investigated. The resulting microstructure and composition are characterized by scanning electron microscopy (SEM), x-ray microscopy (XRM) and x-ray diffraction (XRD). Starting powder size distribution effects on microstructure are present and effect the mechanical properties. Reactive spark plasma sintering introduces boron nitride (BN) intergranular films (IGF's) and their effects on fracture toughness, hardness and flexural strength are shown. Mechanical testing of Vickers hardness, 3-point bend and Chevron notch was done and the microstructural effects on the resulting mechanical properties are investigated.
Date: August 2019
Creator: Lide, Hunter
System: The UNT Digital Library

Charpy Impact Testing of Twinning Induced Plasticity and Transformation Induced Plasticity High Entropy Alloys

Access: Use of this item is restricted to the UNT Community
High entropy alloys (HEAs) are a new class of solid solution alloys that contain multiple principal elements and possess excellent mechanical properties, from corrosion resistance to fatigue and wear resistance. Even more recently, twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) non-equiatomic high entropy alloys have been engineered, promising increased strength and ductility as compared to their equiatomic counterparts. However, impact and fracture resistance of these HEAs has not been studied as much as their other mechanical properties. In this thesis, the hardness, tensile properties, and Charpy impact energy of Al0.3CoCrFeNi, a TWIP HEA, and 50Fe-30Mn-10Co-10Cr (at.%), a TRIP HEA, was explored. First, three processing conditions, (1) as-received, (2) recrystallized, and (3) peak hardness, were chosen for each alloy and verified with Vickers microhardness measurements. Next, the tensile properties of each alloy and condition were investigated. Charpy impact specimen size was then selected based on the final plate thickness, and the machined samples were tested. Plastic zone size and change in sample thickness in the deformed region of each condition after testing was measured. Post-impact test inspection of the samples in all conditions showed that the samples were in tension near the V-notch root and in compression at the …
Date: August 2019
Creator: Zellner, Samantha R
System: The UNT Digital Library

Extrinsic Doping of Few Layered Tungsten Disulfide Films by Pulsed Laser Deposition

Access: Use of this item is restricted to the UNT Community
This dissertation tested the hypothesis that pulsed laser deposition (PLD) could be used to create targeted dopant profiles in few layered WS2 films based on congruent evaporation of the target. At the growth temperatures used, 3D Volmer-Weber growth was observed. Increased energy transfer from the PLD plume to the growing films degraded stoichiometry (desorption of sulfur) and mobility. Sulfur vacancies act as donors and produce intrinsic n-type conductivity. Post deposition annealing significantly improved the crystallinity, which was accompanied by a mobility increase from 6.5 to 19.5 cm2/Vs. Preparation conditions that resulted in excess sulfur, possibly in the form of interstitials, resulted in p-type conductivity. Current-voltage studies indicated that Ohmic contacts were governed by surface properties and tunneling. Extrinsic p-type doping of few layered WS2 films with Nb via pulsed laser deposition using ablation targets fabricated from WS2, S and Nb powders is demonstrated. The undoped controls were n-type, and exhibited a Hall mobility of 0.4 cm2/Vs. Films doped at 0.5 and 1.1 atomic percentages niobium were p-type, and characterized by Fermi levels at 0.31 eV and 0.18 eV from the valence band edge. That is, the Fermi level moved closer to the valence band edge with increased doping. With increased …
Date: August 2019
Creator: Rathod, Urmilaben Pradipsinh P
System: The UNT Digital Library

Phase Transformation and Elastic Constants in Binary Titanium Alloys: An Atomistic Study

Access: Use of this item is restricted to the UNT Community
The current understanding of the mechanical properties and deformation behavior of some individual phases in titanium alloys is limited due to the fine scale at which these phases precipitate within the β-phase matrix. The α and ω phases represent the most widely observed phases in titanium alloys depending on the alloy composition and also the heat treatment procedure adopted during processing. The possibility of precipitating ω-phase depends on the content of the β-stabilizers within the system. Although a significant compositional partitioning occurs within ω-phase upon aging treatment, the knowledge of ω-phase mechanical properties as a function of composition is very limited. The initial part of the current work focuses on the effect of common β-stabilizers elements on the phase stability and mechanical properties of the ω-phase using first-principles calculations. A relation between the bonding nature, the phase stability, and elastic properties was proposed. Thereafter αʺ martensitic phase was investigated in Ti-Nb and Ti-Nb-O alloys. The phase stability and martensitic start temperature of αʺ-phase was studied as a function of Nb and oxygen content. Also, the effect of the lattice shear distortion induced by oxygen atom on stabilizing β-phase was investigated. Subsequently the effect of the β-stabilizers' elements on stacking faults …
Date: August 2019
Creator: Salloom, Riyadh Farooq
System: The UNT Digital Library

Understanding the Micromechanism of Cyclic Loading Behavior of Ultrafine Grained Alloys

Access: Use of this item is restricted to the UNT Community
In the current study, we have investigated the cyclic loading behavior of conventional as well as novel alloy system exhibiting fine and ultrafine-grained structure. While in case of conventional alloy systems (here aluminum alloy AA5024), the effect of three different grain sizes was investigated. Improvement in fatigue properties was observed with decreasing grain size. The unique microstructure produced via Friction stir processing was responsible for the improved fatigue response. Additionally, microstructures consisting of a high fraction of special boundaries within the fine and ultrafine-grained regime were also subjected to cyclic loading. The hierarchical features introduced in the eutectic high entropy alloy deflected the persistent slip bands, responsible for fatigue cracking, thus resulted in delayed crack initiation and improved fatigue life. The selective nature of fatigue was learnt in the fine grain Al0.5CoCrFeNi, where the introduction of hierarchical features did not result in improved fatigue properties. The weak links in the microstructure, while not affecting the tensile properties, got exposed during cyclic loading. Further study on the medium entropy alloy revealed the inherent reason for the improved fatigue properties. The medium entropy alloys utilized the benefit of UFG single-phase FCC matrix. The UFG matrix showed signs of transformation of FCC phase …
Date: August 2019
Creator: Shukla, Shivakant
System: The UNT Digital Library

Phase Transformations in Refractory High Entropy Alloys

Access: Use of this item is restricted to the UNT Community
High entropy alloys (HEAs) based on refractory elements have shown a great potential for high temperature structural applications. In particular, the ones containing Al, exhibits a microstructure similar to the γ-γ' in Ni-based superalloys. While these alloys exhibit impressive strengths at room temperature (RT) and at elevated temperatures, the continuous B2 matrix in these alloys is likely to be responsible for their brittle behavior at RT. Phase stability of five such alloys are studied by thermo-mechanical treatments and characterization techniques using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two of these alloys showed an inverted microstructure, where the disordered BCC phase becomes continuous, and therefore, they were characterized in detail using SEM, TEM, atom probe tomography (APT) and synchrotron x-ray diffraction experiments. The phenomenon of phase inversion lead to a better combination of strength and ductility as compared to the non-inverted microstructure.To enhance the stability of B2 intermetallic phase which provides the strength when present in a BCC matrix, multicomponent B2 phase compositions stable at 1000°C in some of the above studied alloys, were melted separately. The aim was to establish a single phase B2 at 1000°C and understand the mechanical behavior of these single-phase multicomponent B2 intermetallic …
Date: August 2019
Creator: Soni, Vishal
System: The UNT Digital Library

Dynamic Deformation and Shear Localization in Friction-Stir Processed Al0.3CoCrFeNi and Fe50Mn30Co10Cr10 High-Entropy Alloys

Access: Use of this item is restricted to the UNT Community
High entropy alloys (HEAs) are a relatively new class of solid solution alloys that contain multiple principal elements to take advantage of their high configurational entropy, sluggish diffusion, lattice distortion, and the cocktail effect. In recent development, work hardening mechanisms known as twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) have been found active in Al0.3CoCrFeNi (molar fraction) and Fe50Mn30Co10Cr10 (at %) HEA compositions. Friction-stir processing was done to increase the mechanical properties and improve the microstructure of the alloys for the purpose of high strain rate performance. Quasi-static tensile tests as well as top-hat geometry Split-Hopkinson pressure bar tests were conducted to view the mechanical properties as well as view the microstructural evolution at dynamic strain rates. Overall, the Al0.3CoCrFeNi condition after friction-stir processing and heat treatment has proved to have the best mechanical properties, and selecting from the conditions in this study, Al0.3CoCrFeNi has better shear localization resistance.
Date: August 2019
Creator: Macdonald, Neil
System: The UNT Digital Library

Carbon Nanotubes and Molybdenum Disulfide Protected Electrodes for High Performance Lithium-Sulfur Battery Applications

Access: Use of this item is restricted to the UNT Community
Lithium-sulfur (Li-S) batteries are faced with practical drawbacks of poor cycle life and low charge efficiency which hinder their advancements. Those drawbacks are primarily caused by the intrinsic issues of the cathodes (sulfur) and the anodes (Li metal). In attempt to resolve the issues found on the cathodes, this work discusses the method to prepare a binder-free three-dimensional carbon nanotubes-sulfur (3D CNTs-S) composite cathode by a facile and a scalable approach. Here, the 3D structure of CNTs serves as a conducting network to accommodate high loading amounts of active sulfur material. The efficient electron pathway and the short Li ions (Li+) diffusion length provided by the 3D CNTs offset the insulating properties of sulfur. As a result, high areal and specific capacities of 8.8 mAh cm−2 and 1068 mAh g−1, respectively, with the sulfur loading of 8.33 mg cm−2 are demonstrated; furthermore, the cells operated at a current density of 1.4 mA cm−2 (0.1 C) for up to 150 cycles. To address the issues existing on the anode part of Li-S batteries, this work also covers the novel approach to protect a Li metal anode with a thin layer of two-dimensional molybdenum disulfide (MoS2). With the protective layer of MoS2 …
Date: August 2019
Creator: Cha, Eunho
System: The UNT Digital Library
Design of a Polymeric Coating for Protecting Thermoelectric Materials from Sublimation and Oxidation (open access)

Design of a Polymeric Coating for Protecting Thermoelectric Materials from Sublimation and Oxidation

Thermoelectric (TE) devices can undergo degradation from reactions in corrosive environments and at higher operating temperatures by sublimation and oxidation. To prevent the degradation, we have applied two high temperature polymers (HTPs) as coatings for TE materials. Sintering temperatures were from 250°C to 400°C. We explain why dip coating is better technique in our study and had two potential HTPs for tests. By applying TGA (thermogravimetric analysis), we were able to figure out which HTPs have better thermal resistivity. Besides, TGA also help us to find proper curing cycles for HTPs. EDS and SEM results show that the coatings prevent oxidation and sublimation of TE materials. We also shorten HTP curing cycle time and lower the energy costs.
Date: August 2019
Creator: Chen, I Kang
System: The UNT Digital Library

Nano-Manufacturing of Catalytic Amorphous Alloys

Access: Use of this item is restricted to the UNT Community
In this dissertation, nano-manufacturing of amorphous alloys for electro-catalytic applications is reported and the role of chemistry and active surface area on catalytic behavior is discussed. The catalytic activity of recently developed platinum and palladium-based metallic glasses was studied using cyclic voltammetry and localized electrochemical techniques. The synergistic effect between platinum and palladium was shown for amorphous alloys containing both these elements. The mechanism for superior catalytic behavior was investigated through electronic structure and surface chemical state of the alloys. A correlation between the work function and catalytic performance of the amorphous alloys with widely varying chemistries was established. To address the high cost associated with the noble-metal containing catalysts, the performance of non-noble Ni-P amorphous catalyst was evaluated for electro-catalysis. A facile pulsed electrodeposition approach was used for the nano-manufacturing of these amorphous catalysts. This nano-manufacturing route allowed the synthesis of fully amorphous nano-wires at room temperature for alloys with little or no noble-metal content. A wide range of nano-wires with varying aspect ratios from 25 to 120 was synthesized using commercially obtained anodic aluminum oxide (AAO) nano-molds. Cyclic voltammetry and chrono-amperometry demonstrated superior performance in terms of electrocatalytic activity and stability of the metallic glass nano-wires towards electro-oxidation …
Date: December 2019
Creator: Hasannaeimi, Vahid
System: The UNT Digital Library