Language

Abelian Group Actions and Hypersmooth Equivalence Relations (open access)

Abelian Group Actions and Hypersmooth Equivalence Relations

We show that any Borel action on a standard Borel space of a group which is topologically isomorphic to the sum of a countable abelian group with a countable sum of lines and circles induces an orbit equivalence relation which is hypersmooth. We also show that any Borel action of a second countable locally compact abelian group on a standard Borel space induces an orbit equivalence relation which is essentially hyperfinite, generalizing a result of Gao and Jackson for the countable abelian groups.
Date: May 2019
Creator: Cotton, Michael R.
System: The UNT Digital Library
Annihilators of Bounded Indecomposable Modules of Vec(R) (open access)

Annihilators of Bounded Indecomposable Modules of Vec(R)

The Lie algebra Vec(ℝ) of polynomial vector fields on the line acts naturally on ℂ[]. This action has a one-parameter family of deformations called the tensor density modules F_λ. The bounded indecomposable modules of Vec(ℝ) of length 2 composed of tensor density modules have been classified by Feigin and Fuchs. We present progress towards describing the annihilators of the unique indecomposable extension of F_λ by F_(λ+2) in the non-resonant case λ ≠ -½. We give the intersection of the annihilator and the subalgebra of lowest weight vectors of the universal enveloping algebra (Vec(ℝ)) of Vec(ℝ). This result is found by applying structural descriptions of the lowest weight vectors of (Vec(ℝ)).
Date: May 2019
Creator: Kenefake, Tyler Christian
System: The UNT Digital Library
Equivalence of the Rothberger and k-Rothberger Games for Hausdorff Spaces (open access)

Equivalence of the Rothberger and k-Rothberger Games for Hausdorff Spaces

First, we show that the Rothberger and 2-Rothberger games are equivalent. Then we adjust the former proof and introduce another game, the restricted Menger game, in order to obtain a broader result. This provides an answer in the context of Hausdorff spaces for an open question posed by Aurichi, Bella, and Dias.
Date: May 2019
Creator: Hiers, Nathaniel Christopher
System: The UNT Digital Library
Infinitary Combinatorics and the Spreading Models of Banach Spaces (open access)

Infinitary Combinatorics and the Spreading Models of Banach Spaces

Spreading models have become fundamental to the study of asymptotic geometry in Banach spaces. The existence of spreading models in every Banach space, and the so-called good sequences which generate them, was one of the first applications of Ramsey theory in Banach space theory. We use Ramsey theory and other techniques from infinitary combinatorics to examine some old and new questions concerning spreading models and good sequences. First, we consider the lp spreading model problem which asks whether a Banach space contains lp provided that every spreading model of a normalized block basic sequence of the basis is isometrically equivalent to lp. Next, using the Hindman-Milliken-Taylor theorem, we prove a new stabilization theorem for spreading models which produces a basic sequence all of whose normalized constant coefficient block basic sequences are good. When the resulting basic sequence is semi-normalized, all the spreading models generated by the above good sequences must be uniformly equivalent to lp or c0. Finally, we investigate the assumption that every normalized block tree on a Banach space has a good branch. This turns out to be a very strong assumption and is equivalent to the space being 1-asymptotic lp. We also show that the stronger assumption …
Date: May 2019
Creator: Krause, Cory A.
System: The UNT Digital Library
Prophet Inequalities for Multivariate Random Variables with Cost for Observations (open access)

Prophet Inequalities for Multivariate Random Variables with Cost for Observations

In prophet problems, two players with different levels of information make decisions to optimize their return from an underlying optimal stopping problem. The player with more information is called the "prophet" while the player with less information is known as the "gambler." In this thesis, as in the majority of the literature on such problems, we assume that the prophet is omniscient, and the gambler does not know future outcomes when making his decisions. Certainly, the prophet will get a better return than the gambler. But how much better? The goal of a prophet problem is to find the least upper bound on the difference (or ratio) between the prophet's return, M, and the gambler's return, V. In this thesis, we present new prophet problems where we seek the least upper bound on M-V when there is a fixed cost per observations. Most prophet problems in the literature compare M and V when prophet and gambler buy (or sell) one asset. The new prophet problems presented in Chapters 3 and 4 treat a scenario where prophet and gambler optimize their return from selling two assets, when there is a fixed cost per observation. Sharp bounds for the problems on small …
Date: August 2019
Creator: Brophy, Edmond M.
System: The UNT Digital Library
Applications of a Model-Theoretic Approach to Borel Equivalence Relations (open access)

Applications of a Model-Theoretic Approach to Borel Equivalence Relations

The study of Borel equivalence relations on Polish spaces has become a major area of focus within descriptive set theory. Primarily, work in this area has been carried out using the standard methods of descriptive set theory. In this work, however, we develop a model-theoretic framework suitable for the study of Borel equivalence relations, introducing a class of objects we call Borel structurings. We then use these structurings to examine conditions under which marker sets for Borel equivalence relations can be concluded to exist or not exist, as well as investigating to what extent the Compactness Theorem from first-order logic continues to hold for Borel structurings.
Date: August 2019
Creator: Craft, Colin N.
System: The UNT Digital Library

A Novel Two-Stage Adaptive Method for Estimating Large Covariance and Precision Matrices

Access: Use of this item is restricted to the UNT Community
Estimating large covariance and precision (inverse covariance) matrices has become increasingly important in high dimensional statistics because of its wide applications. The estimation problem is challenging not only theoretically due to the constraint of its positive definiteness, but also computationally because of the curse of dimensionality. Many types of estimators have been proposed such as thresholding under the sparsity assumption of the target matrix, banding and tapering the sample covariance matrix. However, these estimators are not always guaranteed to be positive-definite, especially, for finite samples, and the sparsity assumption is rather restrictive. We propose a novel two-stage adaptive method based on the Cholesky decomposition of a general covariance matrix. By banding the precision matrix in the first stage and adapting the estimates to the second stage estimation, we develop a computationally efficient and statistically accurate method for estimating high dimensional precision matrices. We demonstrate the finite-sample performance of the proposed method by simulations from autoregressive, moving average, and long-range dependent processes. We illustrate its wide applicability by analyzing financial data such S&P 500 index and IBM stock returns, and electric power consumption of individual households. The theoretical properties of the proposed method are also investigated within a large class of …
Date: August 2019
Creator: Rajendran, Rajanikanth
System: The UNT Digital Library

A Global Spatial Model for Loop Pattern Fingerprints and Its Spectral Analysis

Access: Use of this item is restricted to the UNT Community
The use of fingerprints for personal identification has been around for thousands of years (first established in ancient China and India). Fingerprint identification is based on two basic premises that the fingerprint is unique to an individual and the basic characteristics such as ridge pattern do not change over time. Despite extensive research, there are still mathematical challenges in characterization of fingerprints, matching and compression. We develop a new mathematical model in the spatial domain for globally modeling loop pattern fingerprints. Although it is based on the well-known AM-FM (amplitude modulation and frequency modulation) image representation, the model is constructed by a global mathematical function for the continuous phase and it provides a flexible parametric model for loop pattern fingerprints. In sharp contrast to the existing methods, we estimate spatial parameters from the spectral domain by combining the exact values of frequencies with their orientations perpendicular to the fingerprint ridge flow. In addition, to compress fingerprint images and test background Gaussian white noise, we propose a new method based on periodogram spacings. We obtain the joint pdf of these m-dependent random variables at Fourier frequencies and derive the asymptotic distribution of the test statistic.
Date: August 2019
Creator: Wu, Di
System: The UNT Digital Library