Degree Discipline

Degree Level

States

Language

Superbursts: Investigation of Abnormal Paroxysmal Bursting Activity in Nerve Cell Networks In Vitro (open access)

Superbursts: Investigation of Abnormal Paroxysmal Bursting Activity in Nerve Cell Networks In Vitro

Superbursts (SBs) are large, seemingly spontaneous activity fluctuations often encountered in high density neural networks in vitro. Little effort has been put forth to define and analyze SBs which are paroxysmal bursting discharges. Through qualitative and quantitative means, I have described specific occurrences of superbursting activity. A complex of paroxysmal bursting has been termed a "superburst episode," and each individual SB is a "superburst event" which is comprises a fine burst structure. Quantitative calculations (employing overall spike summations and coefficient of variation (CV) calculations), reveal three distinct phases. Phase 1 is a "build up" phase of increasingly strong, coordinated bursting with an average of a 17.6% ± 13.7 increase in activity from reference. Phase 2, the "paroxysmal" phase, is comprised of massive coordinated bursting with high frequency spike content. Individual spike activity increases by 52.9% ± 14.6. Phase 3 is a "recovery phase" of lower coordination and an average of a 50.1% ± 35.6 decrease in spike production from reference. SBs can be induced and terminated by physical manipulation of the medium. Using a peristaltic pump with a flow rate of 0.4ml/min, superbursting activity ceases approximately 28.3 min after the introduction of flow. Alternatively, upon cessation of medium flow superbursting …
Date: May 2018
Creator: Suri, Nikita
System: The UNT Digital Library
The Role of Thyroid Hormone on the Development of Endothermy in White Leghorn Chickens (Gallus gallus) (open access)

The Role of Thyroid Hormone on the Development of Endothermy in White Leghorn Chickens (Gallus gallus)

As chickens hatch, there is a rapid change in their physiology and metabolism associated with attaining endothermy. It is thought that thyroid hormones (TH) play a major role in regulating developmental changes at hatching. In birds, TH regulates skeletal muscle growth, which has a direct impact on the chick's ability to thermoregulate via shivering thermogenesis. To better understand the role of TH in the timing of hatching, development of thermogenic capacity, and metabolic rate, we manipulated plasma TH levels in chicken embryos beginning at 85% development (day 17 of a 21 day incubation) with either thyroperoxidase inhibitor methimazole (MMI) or supplemental triiodothyronine (T3). After TH manipulation, we characterized O2 consumption and body temperature in the thermal neutral zone and during gradual cooling. Externally pipped embryos and 1 day post hatch (dph) chicks were cooled from 35 to 15°C. Manipulation of TH altered the timing of hatching, accelerating hatching under hyperthyroid conditions and decelerating hatching with hypothyroid conditions. Cohen's d revealed a large effect size on body temperature (Tb) of EP embryos of hypothyroid animals when compared to euthyroid animals in environmental temperatures of 32°C to 15°C, which was not seen in 1dph animals. Hyperthyroid EP animals were able to maintain …
Date: August 2018
Creator: Rippamonti, Jessica D.
System: The UNT Digital Library
Autonomic Nerve Activity and Cardiovascular Function in the Chicken Embryo (Gallus gallus) (open access)

Autonomic Nerve Activity and Cardiovascular Function in the Chicken Embryo (Gallus gallus)

The goal of this study was to build on the historic use of the avian model of development and also to further the knowledge of autonomic nervous system (ANS) regulation of cardiovascular function in vertebrates. Vasoactive drugs sodium nitroprusside, a vasodilator and phenylephrine, a vasoconstrictor were used to study the correlation of cardiovascular function relationship with nerve activity, both sympathetic and parasympathetic (vagal). Additionally, ANG II was used to assess its effects on vagal inhibition. The present study shows that pharmacologically-induced hypertension is associated with a fall in mSNA, indicating that the capacity for sympathetic autonomic cardiovascular regulation is established by late incubation however, late-stage embryonic chickens did not show a significant increase in mSNA during hypotension. The hypotensive response of the embryo was not accompanied by the expected inhibition of vagal discharge; however a slight but insignificant reduction in vagal discharge was noted. When vagal efferent output was isolated, a significant drop in vagal efferent activity was noted in response to hypotension. The present study showed late-stage embryonic chickens lack a vagal response to hypertension in both efferent and sensory limbs. In this study, vagal discharge was reduced from baseline levels in response to Ang II. Collectively, the present …
Date: December 2018
Creator: Onyemaechi, Clinton
System: The UNT Digital Library
In Vitro Exploration of Functional Acrolein Toxicity with Cortical Neuronal Networks (open access)

In Vitro Exploration of Functional Acrolein Toxicity with Cortical Neuronal Networks

Acrolein is produced endogenously after traumatic brain injury (TBI) and is considered a primary mechanism for secondary damage occurring after TBI. We are using frontal cortex networks derived from mouse embryos and grown on microelectrode arrays in vitro to monitor the spontaneous activity of networks and the changes that occur after acrolein application. Networks exposed to acrolein exhibit a biphasic response profile. An initial increase in network activity, followed by a decrease to 100% activity loss in applications ≥ 50 µM. In applications below 50 µM, acrolein was not toxic but generated activity instability with coordinated but irregular population busts lasting for up to 6 days. The increase in activity preceding toxicity may be linked to a decrease in free spermine, a free radical scavenger that modulates Na+, K+, Ca+ channels as well as NMDA, Kainate, and AMPA receptors. Action potential wave shape analysis after 20 and 30 µM acrolein application revealed a concentration-dependent 15-33% increase in peak to peak amplitude within minutes after exposure. For the same concentrations of acrolein (50 µM), the time required to reach 100% activity loss (IT100) was longer in serum-free medium than in medium with 5% serum, in which IT100 values were reduced by …
Date: May 2018
Creator: Durant, Stormy R.
System: The UNT Digital Library
Population Dynamics and Community Structure of Mosquitoes (Diptera: Culicidae) Recorded in Denton, Texas from 2005 to 2015 (open access)

Population Dynamics and Community Structure of Mosquitoes (Diptera: Culicidae) Recorded in Denton, Texas from 2005 to 2015

A population survey was conducted on the mosquito species recorded in Denton, Texas for the years of 2005 to 2015. Data used in this project were obtained from an ongoing, long-term surveillance program led by the City of Denton and conducted through the University of North Texas. Research focused on the population dynamics and community structure of mosquitoes collected within urban areas of Denton, Texas in relation to certain environmental variables. A total of 80,837 female mosquitoes were captured and represented 38 species found under the following genera: Aedes, Anopheles, Coquillettidia, Culex, Culiseta, Mansonia, Orthopodomyia, Psorophora, Toxorhynchites, and Uranotaenia. Culex quinquefasciatus was the most abundant species followed by Aedes vexans. Seasonal patterns of the most abundant species revealed high variability throughout the study. Container breeders were most abundant in August and those that breed in floodwaters were most abundant in the months of May and September. Samples were tested for arbovirus presence through the Texas Department of State Health Services in Austin, Texas and multiple pools tested positive for West Nile virus throughout the study. Stepwise multiple regression and Spearman's rank correlation analyses were performed to examine the relationship between the mosquito community and environmental variables. Data revealed that temperature, …
Date: May 2018
Creator: Hambrick, Bethany Lynn
System: The UNT Digital Library
Simultaneous Electrophysiological and Morphological Assessment of Impact Damage to Nerve Cell Networks (open access)

Simultaneous Electrophysiological and Morphological Assessment of Impact Damage to Nerve Cell Networks

A ballistic pendulum impulse generator was used to impact networks in primary culture growing on microelectrode arrays. This approach has the advantage of imparting pure tangential acceleration insults (50 to 300 g) with simultaneous morphological and electrophysiological multichannel monitoring for days before and after the impact. Action potential (AP) production, network activity patterns, and cell electrode coupling of individual units using AP waveshape templates were quantified. Network adhesion was maintained after tangential impacts up to 300g with minimal loss of pre-selected active units. Time lapse phase contrast microscopy revealed stable nuclei pre-impact, but post impact nuclear rotation in 95% of observations (n= 30). All recording experiments (n=31) showed a repeatable two-phase spike production response profile: recovery to near reference in 1-2 hrs, followed by a slow activity decay to a stable, level plateau approximately 30-40% below reference. Phase 1 consisted of a complex two-step recovery: rapid activity increase to an average 23.6% (range: 11-34%) below reference, forming a level plateau lasting from 5 to 20 min, followed by a climb to within 20% of reference where a second plateau was established for 1 to 2 hrs. Cross correlation profiles showed changes in firing hierarchy after impact, and in spontaneous network …
Date: May 2018
Creator: Rogers, Edmond A.
System: The UNT Digital Library
The Role of Transmembrane Protein 59 in Thrombocyte Function and the Effect of MS-222 on Hemostasis in Zebrafish (open access)

The Role of Transmembrane Protein 59 in Thrombocyte Function and the Effect of MS-222 on Hemostasis in Zebrafish

Transmembrane protein 59 (tmem59) is a gene that encodes a protein involved in autophagy and apoptosis in human. A previous study in zebrafish showed that tmem59 mRNA was several folds higher in thrombocytes than those found in red blood cells (RBCs). Therefore, we hypothesized that tmem59 has a role in thrombocytes function. We injected a hybrid of control vivo-morpholino (cVMO) and tmem59 specific antisense standard oligonucleotide (tmem59SO) into adult zebrafish to knockdown tmem59.This piggyback knockdown approach resulted in fish that had more bleeding in gill bleeding assay than the control fish. The thrombocytes fromtmem59 knockdown zebrafish aggregated faster with ADP and collagen agonists. Also, the number of blood cells was reduced after the knockdown of tmem59. We also found the effects of MS-222 anesthesia on hemostasis and found that the bleeding was reduced yielding less blood and the blood cell counts increased probably due to vasoconstriction of the blood vessels. In summary, we found tmem59 is a negative regulator of hemostasis and inferred that anesthesia should be avoided in hemostasis studies.
Date: August 2018
Creator: Deebani, Afnan Omar M.
System: The UNT Digital Library