Resource Type

Language

Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling (open access)

Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling

We introduce an agent-based model of epithelial cell morphogenesis to explore the complex interplay between apoptosis, proliferation, and polarization. By varying the activity levels of these mechanisms we derived phenotypic transition maps of normal and aberrant morphogenesis. These maps identify homeostatic ranges and morphologic stability conditions. The agent-based model was parameterized and validated using novel high-content image analysis of mammary acini morphogenesis in vitro with focus on time-dependent cell densities, proliferation and death rates, as well as acini morphologies. Model simulations reveal apoptosis being necessary and sufficient for initiating lumen formation, but cell polarization being the pivotal mechanism for maintaining physiological epithelium morphology and acini sphericity. Furthermore, simulations highlight that acinus growth arrest in normal acini can be achieved by controlling the fraction of proliferating cells. Interestingly, our simulations reveal a synergism between polarization and apoptosis in enhancing growth arrest. After validating the model with experimental data from a normal human breast line (MCF10A), the system was challenged to predict the growth of MCF10A where AKT-1 was overexpressed, leading to reduced apoptosis. As previously reported, this led to non growth-arrested acini, with very large sizes and partially filled lumen. However, surprisingly, image analysis revealed a much lower nuclear density than …
Date: February 18, 2011
Creator: Tang, Jonathan; Enderling, Heiko; Becker-Weimann, Sabine; Pham, Christopher; Polyzos, Aris; Chen, Chen-Yi et al.
System: The UNT Digital Library
Water Chemistry Control System for Recovery of Damaged and Degraded Spent Fuel (open access)

Water Chemistry Control System for Recovery of Damaged and Degraded Spent Fuel

The International Atomic Energy Agency (IAEA) and the government of Serbia have led the project cosponsored by the U.S, Russia, European Commission, and others to repackage and repatriate approximately 8000 spent fuel elements from the RA reactor fuel storage basins at the VIN?A Institute of Nuclear Sciences to Russia for reprocessing. The repackaging and transportation activities were implemented by a Russian consortium which includes the Sosny Company, Tekhsnabeksport (TENEX) and Mayak Production Association. High activity of the water of the fuel storage basin posed serious risk and challenges to the fuel removal from storage containers and repackaging for transportation. The risk centered on personnel exposure, even above the basin water, due to the high water activity levels caused by Cs-137 leached from fuel elements with failed cladding. A team of engineers from the U.S. DOE-NNSA's Global Threat Reduction Initiative, the Vinca Institute, and the IAEA performed the design, development, and deployment of a compact underwater water chemistry control system (WCCS) to remove the Cs-137 from the basin water and enable personnel safety above the basin water for repackaging operations. Key elements of the WCCS system included filters, multiple columns containing an inorganic sorbent, submersible pumps and flow meters. All system …
Date: February 18, 2011
Creator: Sindelar, R.; Fisher, D. & Thomas, J.
System: The UNT Digital Library
3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets (open access)

3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.
Date: February 18, 2011
Creator: Buice, E. S.; Alger, E. T.; Antipa, N. A.; Bhandarkar, S. D.; Biesiada, T. A.; Conder, A. D. et al.
System: The UNT Digital Library
BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES (open access)

BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.
Date: February 18, 2011
Creator: Youmans-Mcdonald, L.
System: The UNT Digital Library
Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics (open access)

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique …
Date: February 18, 2011
Creator: Grigoriev, Igor; Gobler, Christopher; Salamov, Asaf; Kuo, Alan; Terry, Astrid; Pangillian, Jasmyn et al.
System: The UNT Digital Library
Noise Properties of Rectifying Nanopores (open access)

Noise Properties of Rectifying Nanopores

Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.
Date: February 18, 2011
Creator: Powell, M. R.; Sa, N.; Davenport, M.; Healy, K.; Vlassiouk, I.; Letant, S. E. et al.
System: The UNT Digital Library
Electrodeposition of Uranium and Plutonium on Thin Carbon and Titanium Substrates (open access)

Electrodeposition of Uranium and Plutonium on Thin Carbon and Titanium Substrates

Preparation of Pu and U targets on thin natural C (100 {micro}g/cm{sup 2}) and ti (2 and 3 {micro}m) substrates is described. The Actinide material of interest was first purified using ion exchange chromatography to remove any matrix contaminants or decay products present in the parent stock solution. The actinide solution was prepared in 0.05 M HNO{sub 3} with a final aliquot volume not exceeding 100 {micro}L for the deposition procedure. The electroplating cells were developed in-house and were primarily made of Teflon. The source material deposited ranged from 125 to 400 {micro}g/cm{sup 2}. It was determined that multiple layers of U and Pu were required to produce thicker targets on Ti. Plating efficiency was greatly affected by the cell volume, solution aliquot size, pre-treatment of the foils, solution mixing during palting, and the fit of the electrode contact with the target substrate. The final procedure used for deposition is described in detail.
Date: February 18, 2011
Creator: Henderson, R A; Gostic, J M; Burke, J T; Fisher, S E & Wu, C Y
System: The UNT Digital Library