Evidence for B Semileptonic Decays into the Lambda_c Charm Baryon (open access)

Evidence for B Semileptonic Decays into the Lambda_c Charm Baryon

We present the first evidence for B semileptonic decays into the charmed baryon {Lambda}{sub c}{sup +} based on 420 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings. Events are tagged by fully reconstructing one of the B mesons in a hadronic decay mode. We measure the relative branching fraction {Beta}({bar B} {yields} {Lambda}{sub c}{sup +} X{ell}{sup -}{bar {nu}}{sub {ell}})/{Beta}({bar B} {yields} {Lambda}{sub c}{sup +}/{bar {Lambda}}{sub c}{sup -}X) = (3.2 {+-} 0.9{sub stat.} {+-} 0.9{sub syst.})%. The significance of the signal including the systematic uncertainty is 4.9 standard deviations.
Date: November 5, 2008
Creator: Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E. et al.
Object Type: Article
System: The UNT Digital Library
A 15-T Pulsed Solenoid for a High-Power Target Experiment (open access)

A 15-T Pulsed Solenoid for a High-Power Target Experiment

The MERIT experiment, which ran at CERN in 2007, is a proof-of-principle test for a target system that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino factory complex or a muon collider. The target system is based on a free mercury jet that intercepts an intense proton beam inside a 15-T solenoidal magnetic field. Here, we describe the design and performance of the 15-T, liquid-nitrogen-precooled, copper solenoid magnet.
Date: June 23, 2008
Creator: Kirk, H. G.; Efthymiopoulos, I.; Fabich, A.; Haug, F.; Pereira, H.; Titus, P. et al.
Object Type: Article
System: The UNT Digital Library
Isomorphic classical molecular dynamics model for an excess electronin a supercritical fluid (open access)

Isomorphic classical molecular dynamics model for an excess electronin a supercritical fluid

Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, the RPMD model improves, nearly satisfying analytical continuation constraints at densities approaching those of typical liquids. In the high density regime, quantum dispersion substantially decreases the self-diffusion of the solvated electron. In this regime where the dynamics of the electron is strongly coupled to the dynamics of the atoms in the fluid, trajectories that can reveal diffusive motion of the electron are long in comparison to {beta}{h_bar}.
Date: August 4, 2008
Creator: Miller, Thomas F., III
Object Type: Article
System: The UNT Digital Library
Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis (open access)

Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.
Date: November 17, 2008
Creator: Mitra, S.
Object Type: Article
System: The UNT Digital Library
Aging and Fracture of Human Cortical Bone and Tooth Dentin (open access)

Aging and Fracture of Human Cortical Bone and Tooth Dentin

Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.
Date: May 7, 2008
Creator: Ager, Joel; Koester, Kurt J.; Ager, Joel W., III & Ritchie, Robert O.
Object Type: Article
System: The UNT Digital Library
How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks (open access)

How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses …
Date: May 10, 2008
Creator: Ritchie, Robert O.; Koester, K. J.; Ager, J. W., III & Ritchie, R. O.
Object Type: Article
System: The UNT Digital Library
Theory of Nanocluster Size Distributions from Ion Beam Synthesis (open access)

Theory of Nanocluster Size Distributions from Ion Beam Synthesis

Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.
Date: June 13, 2008
Creator: Yuan, C. W.; Yi, D. O.; Sharp, I. D.; Shin, S. J.; Liao, C. Y.; Guzman, J. et al.
Object Type: Article
System: The UNT Digital Library
Advanced Burner Test Reactor Preconceptual Design Report. (open access)

Advanced Burner Test Reactor Preconceptual Design Report.

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. …
Date: December 16, 2008
Creator: Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F. et al.
Object Type: Report
System: The UNT Digital Library
Synthesis of rutherfordium isotopes in the 238U(26Mg, xn)264-xRf reaction and study of their decay properties (open access)

Synthesis of rutherfordium isotopes in the 238U(26Mg, xn)264-xRf reaction and study of their decay properties

Isotopes of rutherfordium (258-261Rf) were produced in irradiations of 238U targets with 26Mg beams. Excitation functions were measured for the 4n, 5n and 6n exit channels. Production of 261Rf in the 3n exit channel with a cross section of 28+92-26 pb was observed. Alpha decay of 258Rf was observed for the first time with an alpha-particle energy of 9.05+-0.03 MeV and an alpha/total decay branching ratio of 0.31+-0.11. In 259Rf, the electron capture/total decay branching ratio was measured to be 0.15+-0.04. The measured half-lives for 258Rf, 259Rf and 260Rf were 14.7+1.2-1.0 ms, 2.5+0.4-0.3 s and 22.2+3.0-2.4 ms, respectively, in agreement with literature data. The systematics of the alpha decay Q values and of the partial spontaneous fission half-lives were evaluated for even-even nuclides in the region of the N = 152, Z = 100 deformed shell. The influence of the N = 152 shell on the alpha decay Q values for rutherfordium was observed to be similar to that of the lighter elements (96<_ Z<_ 102). However, the N = 152 shell does not stabilize the rutherfordium isotopes against spontaneous fission, as it does in the lighter elements (96<_ Z<_102).
Date: January 15, 2008
Creator: Gates, Jacklyn M.; Gates, J. M.; Garcia, M. A.; Gregorich, K. E.; Dullmann, Ch. E.; Dragojevic, I. et al.
Object Type: Article
System: The UNT Digital Library
Energy confinement and magnetic field generation in the SSPX spheromak (open access)

Energy confinement and magnetic field generation in the SSPX spheromak

The Sustained Spheromak Physics Experiment (SSPX) [E.B. Hooper, et. al., Nuclear Fusion, Vol. 39, No. 7] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (T{sub e}) recorded for a spheromak with T{sub e} &gt; 500 eV, toroidal magnetic field {approx}1 T and toroidal current ({approx}1 MA) [R.D. Wood, D.N. Hill, H.S. McLean, E.B. Hooper, B.F. Hudson, J.M. Moller, 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', submitted to Physical Review Letters]. Extending the sustainment phase to &gt; 8 ms extends the period of low magnetic fluctuations (&lt; 1 %) by 50%. The NIMROD 3-D resistive MHD code [C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger and D.D. Schnack, The NIMROD Team, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification {Psi}{sub pol}/{Psi}{sub gun}. Successive gun pulses are demonstrated to maintain the magnetic field in a quasi-steady state against resistive decay. Initial measurements of neutral particle flux in multi-pulse …
Date: February 11, 2008
Creator: Hudson, B.; McLean, H. S.; Wood, R. D.; Hooper, E. B.; Hill, D. N.; Jayakumar, J. et al.
Object Type: Article
System: The UNT Digital Library
Comparison of reactions for the production of 258,257Db: 208Pb(51V,xn) and 209Bi(50Ti,xn) (open access)

Comparison of reactions for the production of 258,257Db: 208Pb(51V,xn) and 209Bi(50Ti,xn)

Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070+1100/-760 pb was measured at an excitation energy of 16.0 +- 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660+450/-370 pb was measured at 22.0 +- 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480+1750/-1370 pb at an excitation energy of 16.0 +- 1.6 MeV, in agreement with previous values [F. P. Hebberger, et al., Eur. Phys. J. A 12, 57 (2001)]. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier.
Date: September 29, 2008
Creator: Gates, Jacklyn M.; Nelson, Sarah L.; Gregorich, Kenneth E.; Dragojevic, Irena; Dullmann, Christoph E.; Ellison, Paul A. et al.
Object Type: Article
System: The UNT Digital Library
Inkjet Printing of Nickel and Silver Metal Solar Cell Contacts (open access)

Inkjet Printing of Nickel and Silver Metal Solar Cell Contacts

With about 125,000 terawatts of solar power striking the earth at any given moment, solar energy may be the only renewable energy resource with enough capacity to meet a major portion of our future energy needs. Thin-fi lm technologies and solution deposition processes seek to reduce manufacturing costs in order to compete with conventional coal-based electricity. Inkjet printing, as a derivative of the direct-write process, offers the potential for low-cost, material-effi cient deposition of the metals for photovoltaic contacts. Advances in contact metallizations are important because they can be employed on existing silicon technology and in future-generation devices. We report on the atmospheric, non-contact deposition of nickel (Ni) and silver (Ag) metal patterns on glass, Si, and ZnO substrates at 180–220°C from metal-organic precursor inks using a Dimatix inkjet printer. Near-bulk conductivity Ag contacts were successfully printed up to 4.5 μm thick and 130 μm wide on the silicon nitride antirefl ective coating of silicon solar cells. Thin, high-resolution Ni adhesion-layer lines were printed on glass and zinc oxide at 80 μm wide and 55 nm thick with a conductivity two orders of magnitude less than the bulk metal. Additionally, the ability to print multi-layered metallizations (Ag on Ni) on …
Date: January 1, 2008
Creator: Pasquarelli, R.; Curtis, C. & van Hest, M.
Object Type: Article
System: The UNT Digital Library
X-Ray Digital Radiography and Computed Tomography Characterization of Targets (open access)

X-Ray Digital Radiography and Computed Tomography Characterization of Targets

The summary of this report is: (1) The Xradia Micro XCT and LLNL CCAT x-ray systems are used to nondestructively characterize a variety of materials, assemblies, and reference standard components; (2) The digital radiograph (DR) and computed tomography (CT) image data may be used for metrology, quality control, and defect detection; and (3) The ability to detect and characterize imperfections leads to improvements in the manufacturing processes for assemblies.
Date: April 16, 2008
Creator: Sain, J. D.; Brown, W. D.; Chinn, D. J.; Martz, H. E., Jr.; Morales, K. E.; Schneberk, D. J. et al.
Object Type: Article
System: The UNT Digital Library