Degree Discipline

Language

Spaces of operators containing co and/or l ∞ with an application of vector measures. (open access)

Spaces of operators containing co and/or l ∞ with an application of vector measures.

The Banach spaces L(X, Y), K(X, Y), Lw*(X*, Y), and Kw*(X*, Y) are studied to determine when they contain the classical Banach spaces co or l ∞. The complementation of the Banach space K(X, Y) in L(X, Y) is discussed as well as what impact this complementation has on the embedding of co or l∞ in K(X, Y) or L(X, Y). Results concerning the complementation of the Banach space Kw*(X*, Y) in Lw*(X*, Y) are also explored and how that complementation affects the embedding of co or l ∞ in Kw*(X*, Y) or Lw*(X*, Y). The l p spaces for 1 ≤ p < ∞ are studied to determine when the space of compact operators from one l p space to another contains co. The paper contains a new result which classifies these spaces of operators. Results of Kalton, Feder, and Emmanuele concerning the complementation of K(X, Y) in L(X, Y) are generalized. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis as well as a new proof of the fact that l ∞ is prime.
Date: August 2008
Creator: Schulle, Polly Jane
System: The UNT Digital Library
A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional (open access)

A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

In this work I present a constructive method for finding critical points of the Ginzburg-Landau energy functional using the method of Sobolev gradients. I give a description of the construction of the Sobolev gradient and obtain convergence results for continuous steepest descent with this gradient. I study the Ginzburg-Landau functional with magnetic field and the Ginzburg-Landau functional without magnetic field. I then present the numerical results I obtained by using steepest descent with the discretized Sobolev gradient.
Date: August 2008
Creator: Kazemi, Parimah
System: The UNT Digital Library