The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer (open access)

The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer

This dissertation presents the highest four-momentum transfer, Q^2,quasielastic (x_Bj = 1) results from Experiment E01-020 which systematically explored the 2He(e,e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q^2 = 0.8, 2.1, and 3.5 GeV^2 and missing momenta, P_miss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, R_LT, and extractoin of the longitudinal-transverse asymmetry, A_LT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are …
Date: December 31, 2006
Creator: Ibrahim, Hassan
System: The UNT Digital Library
An Analysis Framework Addressing the Scale and Legibility of Large Scientific Data Sets (open access)

An Analysis Framework Addressing the Scale and Legibility of Large Scientific Data Sets

Much of the previous work in the large data visualization area has solely focused on handling the scale of the data. This task is clearly a great challenge and necessary, but it is not sufficient. Applying standard visualization techniques to large scale data sets often creates complicated pictures where meaningful trends are lost. A second challenge, then, is to also provide algorithms that simplify what an analyst must understand, using either visual or quantitative means. This challenge can be summarized as improving the legibility or reducing the complexity of massive data sets. Fully meeting both of these challenges is the work of many, many PhD dissertations. In this dissertation, we describe some new techniques to address both the scale and legibility challenges, in hope of contributing to the larger solution. In addition to our assumption of simultaneously addressing both scale and legibility, we add an additional requirement that the solutions considered fit well within an interoperable framework for diverse algorithms, because a large suite of algorithms is often necessary to fully understand complex data sets. For scale, we present a general architecture for handling large data, as well as details of a contract-based system for integrating advanced optimizations into a …
Date: November 20, 2006
Creator: Childs, H. R.
System: The UNT Digital Library
Analysis of Bs flavor oscillations at CDF (open access)

Analysis of Bs flavor oscillations at CDF

The search for and study of flavor oscillations in the neutral B{sub s}B{sub s} meson system is an experimentally challenging task. It constitutes a flagship analysis of the Tevatron physics program. In this dissertation, they develop an analysis of the time-dependent B{sub s} flavor oscillations using data collected with the CDF detector. The data samples are formed of both fully and partially reconstructed B meson decays: B{sub s} {yields} D{sub s}{pi}({pi}{pi}) and B{sub s} {yields} D{sub s}lv. A likelihood fitting framework is implemented and appropriate models and techniques developed for describing the mass, proper decay time, and flavor tagging characteristics of the data samples. The analysis is extended to samples of B{sup +} and B{sup 0} mesons, which are further used for algorithm calibration and method validation. The B mesons lifetimes are extracted. The measurement of the B{sup 0} oscillation frequency yields {Delta}m{sub d} = 0.522 {+-} 0.017 ps{sup -1}. The search for B{sub s} oscillations is performed using an amplitude method based on a frequency scanning procedure. Applying a combination of lepton and jet charge flavor tagging algorithms, with a total tagging power {epsilon}'D{sup 2} of 1.6%, to a data sample of 355 pb{sup -1}, a sensitivity of 13.0 …
Date: September 1, 2006
Creator: Leonardo, Nuno T.
System: The UNT Digital Library
THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS (open access)

THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS

Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA …
Date: October 23, 2006
Creator: Martin, A
System: The UNT Digital Library
Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase (open access)

Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by …
Date: August 9, 2006
Creator: Li, Fenglei
System: The UNT Digital Library
B-tagging and the search for neutral supersymmetric Higgs bosons at D0 (open access)

B-tagging and the search for neutral supersymmetric Higgs bosons at D0

A search for neutral supersymmetric Higgs bosons and work relating to the improvement of the b-tagging and trigger capabilities at the D0 detector during Run II of the Fermilab Tevatron collider is presented. The search for evidence of the Higgs sector in the Standard Model (SM) and supersymmetric extensions of the SM are a high priority for the D0 collaboration, and b-tagging and good triggers are a vital component of these searches. The development and commissioning of the first triggers at D0 which use b-tagging is outlined, along with the development of a new secondary vertex b-tagging tool for use in the Level 3 trigger. Upgrades to the Level 3 trigger hit finding code, which have led to significant improvements in the quality and efficiency of the tracking code, and by extension the b-tagging tools, are also presented. An offline Neural Network (NN) b-tagging tool was developed, trained on Monte Carlo and extensively tested and measured on data. The new b-tagging tool significantly improves the b-tagging performance at D0, for a fixed fake rate relative improvements in signal efficiency range from {approx} 40% to {approx} 15%. Fake rates, for a fixed signal efficiency, are typically reduced to between a quarter …
Date: October 1, 2006
Creator: Scanlon, Tim
System: The UNT Digital Library
Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles (open access)

Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation …
Date: May 1, 2006
Creator: Trewyn, Brian G.
System: The UNT Digital Library
Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers (open access)

Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of {approx}40 nm, and agglomerates of these particles (on the order of 0.5 {mu}m) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.
Date: August 9, 2006
Creator: Enlow, Drew Lenzen
System: The UNT Digital Library
A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE (open access)

A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE

MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a {nu}{sub {mu}} beam with an average energy of {approx} 0.8 GeV and an intrinsic {nu}{sub e} content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH{sub 2}, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE {nu}{sub {mu}} charged current quasielastic (CCQE) scattering data. A data set with {approx} 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the {nu}{sub {mu}} and {nu}{sub e} fluxes are derived using …
Date: July 1, 2006
Creator: Monroe, Jocelyn R.
System: The UNT Digital Library
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors (open access)

Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well …
Date: August 9, 2006
Creator: Fan, Rong
System: The UNT Digital Library
Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x (open access)

Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x

Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and {approx}210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found …
Date: August 9, 2006
Creator: Chernyshov, Alexander S.
System: The UNT Digital Library
CPT conservation and atmospheric neutrinos in the MINOS far detector (open access)

CPT conservation and atmospheric neutrinos in the MINOS far detector

The MINOS Far Detector is a 5400 ton iron calorimeter located at the Soudan state park in Soudan Minnesota. The MINOS far detector can observe atmospheric neutrinos and separate charge current {nu}{sub {mu}} and {bar {nu}}{sub {mu}} interactions by using a 1.4 T magnetic field to identify the charge of the produced muon. The CPT theorem requires that neutrinos and anti-neutrinos oscillate in the same way. In a fiducial exposure of 5.0 kilo-ton years a total of 41 candidate neutrino events are observed with an expectation of 53.1 {+-} 7.6(system.) {+-} 7.2(stat.) unoscillated events or 31.6 {+-} 4.7(system.) {+-} 5.6(stat.) events with {Delta}m{sup 2} = 2.4 x 10{sup -3} eV{sup 2}, sin{sup 2}(2{theta}) = 1.0 as oscillation parameters. These include 28 events which can have there charge identified with high confidence. These 28 events consist of 18 events consistent with being produced by {nu}{sub {mu}} and 10 events being consistent with being produced by {bar {nu}}{sub {mu}}. No evidence of CPT violation is observed.
Date: February 1, 2006
Creator: Becker, Bernard Raymond
System: The UNT Digital Library
Design of a boron neutron capture enhanced fast neutron therapy assembly (open access)

Design of a boron neutron capture enhanced fast neutron therapy assembly

The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about …
Date: August 1, 2006
Creator: Wang, Zhonglu & Tech, /Georgia
System: The UNT Digital Library
Designing of Metallic Photonic Structures and Applications (open access)

Designing of Metallic Photonic Structures and Applications

In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters …
Date: August 9, 2006
Creator: Kim, Yong-Sung
System: The UNT Digital Library
Developing New Nanoprobes from Semiconductor Nanocrystals (open access)

Developing New Nanoprobes from Semiconductor Nanocrystals

In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.
Date: May 29, 2006
Creator: Fu, Aihua
System: The UNT Digital Library
Diffractive processes in antiproton-proton collision at s**(1/2) = 1.96 TeV in the D0 experiment (open access)

Diffractive processes in antiproton-proton collision at s**(1/2) = 1.96 TeV in the D0 experiment

A first study of single diffractive central high-p{sub T} dijet events in p{bar p} collisions at center-of-mass energy {radical}s = 1.96 TeV is presented, using data recorded by the D0 detector at the Tevatron during RunIIa in 2002-2004. The total integrated luminosity corresponding to the data sample is 398 pb{sup -1}. A diffractive sample is selected using a rapidity gap approach. A precise definition of the rapidity gap constitutes the first part of the thesis. The rapidity gap is defined by means of two parts of the D0 detector--luminosity detectors and calorimeter. Luminosity detectors serve as a basic indicators of diffractive candidates and the calorimeter is used to confirm the low energy activity in the forward region (a rapidity gap). Presented studies of energy deposited in forward part of calorimeter by various types of events yield two rapidity gap definitions. Both of them use a fixed rapidity interval in calorimeter |{eta}| {element_of} [2.6,5.2] and introduce an upper limit on the energy deposited in this region. First definition, which corresponds to the lowest systematical errors, uses a limit of 10 GeV, an energy limit in the second definition is set to 3 GeV. This alternative definition corresponds to the lowest contamination …
Date: September 1, 2006
Creator: Otec, Roman & /Prague, Tech. U.
System: The UNT Digital Library
Diffractively produced Z bosons in the muon decay channel in p-pbar collisions at s**(1/2) = 1.96 TeV, and the measurement of the efficiency of the D0 Run II luminosity monitor (open access)

Diffractively produced Z bosons in the muon decay channel in p-pbar collisions at s**(1/2) = 1.96 TeV, and the measurement of the efficiency of the D0 Run II luminosity monitor

The first analysis of diffractively produced Z bosons in the muon decay channel is presented, using data taken by the D0 detector at the Tevatron at {radical}s = 1.96 TeV. The data sample corresponds to an integrated luminosity of 109 pb{sup -1}. The diffractive sample is defined using the fractional momentum loss {zeta} of the intact proton or antiproton measured using the calorimeter and muon detector systems. In a sample of 10791 (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} events, 24 diffractive candidate events are found with {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The systematic uncertainties are not yet sufficiently understood to present the cross section result. In addition, the first measurement of the efficiency of the Run II D0 Luminosity Monitor is presented, which is used in all cross section measurements. The efficiency is: {var_epsilon}{sub LM} = (90.9 {+-} 1.8)%.
Date: April 1, 2006
Creator: Edwards, Tamsin L.
System: The UNT Digital Library
Efficient Execution of Electronic Structure Calculations on SMP Clusters (open access)

Efficient Execution of Electronic Structure Calculations on SMP Clusters

Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such …
Date: May 1, 2006
Creator: Ustemirov, Nurzhan
System: The UNT Digital Library
Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems (open access)

Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to …
Date: May 1, 2006
Creator: Bergren, Adam Johan
System: The UNT Digital Library
Electroweak Production of the Top Quark in the Run II of the D0 Experiment (open access)

Electroweak Production of the Top Quark in the Run II of the D0 Experiment

The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at {radical}s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb{sup -1}. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and the subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final …
Date: April 1, 2006
Creator: Clement, Benoit & /Strasbourg, IReS
System: The UNT Digital Library
Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems (open access)

Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.
Date: September 1, 2006
Creator: Van Tassle, Aaron Justin
System: The UNT Digital Library
Exclusive interactions in p anti-p collisions at s**(1/2) = 1.96 TeV (open access)

Exclusive interactions in p anti-p collisions at s**(1/2) = 1.96 TeV

This thesis presents two exclusive production processes in p{bar p} collisions at {radical}s = 1.96 TeV, using the Collider Detector Facility at Fermi National Accelerator Laboratory. An observation of exclusive e{sup +}e{sup -} production through {gamma}{gamma} {yields} e{sup +}e{sup -} is presented, as well as evidence for exclusive production of {gamma}{gamma} through gg {yields} {gamma}{gamma} (via a quark loop). The exclusive e{sup +}e{sup -} production observation is based on 16 candidate events, with a background estimate of 2.1{sub -0.3}{sup +0.7}. Each event has an e{sup +}e{sup -} pair (E{sub T} (e) > 5 GeV, |{eta}(e)| < 2) and nothing else observable in the CDF detector. The measured cross section is 1.6{sub -0.3}{sup +0.5}(stat) {+-} 0.3(sys) pb, while the predicted cross section is 1.711 {+-} 0.008 pb. The kinematic properties of the events are consistent with the predictions of the LPAIR Monte Carlo. The evidence for exclusive {gamma}{gamma} production consists of 3 candidate events, with a background estimate of 0.0{sub -0.0}{sup +0.2} events. Each event has two photons (E{sub T}{gamma}) > 5 GeV, |{eta}({gamma})| < 1 and nothing else observable in the CDF detector. The measured cross section for these events is 0.14{sub -0.04}{sup +0.14}(stat) {+-} (sys) pb. It agrees with …
Date: May 1, 2006
Creator: Hamilton, Andrew & U., /Alberta
System: The UNT Digital Library
An Experimental Investigation of the Structural Wave Scattering Due to Impedance Discontinuities on a Cylindrical Structure (open access)

An Experimental Investigation of the Structural Wave Scattering Due to Impedance Discontinuities on a Cylindrical Structure

Experimental, numerical, and analytical work has shown that the response of a shell to a distributed force wave possesses unique characteristics which are dependent on the nature of structure attached to the shell. Specific characteristics which influence the response are the distribution of the discontinuities around the circumference (periodic/aperiodic), the impedance of the discontinuities relative to that of the shell, and the type of impedance (mass or stiffness). Traditional shell theory predicts low frequency, radial-dominated structural mode shapes of a shell with a sinusoidal distribution of displacement amplitudes. Due to the orthogonal nature of these mode shapes, the response of the structure to a traveling radial force wave with sinusoidal content at a given harmonic is due solely to the response of the mode shape with harmonic content of the same order. Introduction of impedance discontinuities to a shell yield complex mode shapes, which may be characterized by the summation of several harmonic components. These modes are no longer orthogonal in the presence of discontinuities, yielding harmonic content across various modal orders. As a result, a purely sinusoidal forcing function can excite several modes of the structure. Structural scattering as discussed in this paper refers to the phenomena in which …
Date: February 15, 2006
Creator: Glotzbecker, RJ
System: The UNT Digital Library
Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory (open access)

Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory

Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.
Date: December 8, 2006
Creator: Mazouz, Malek
System: The UNT Digital Library