Plant Wide Assessment for Johns Manville Waterville Ohio Plant 1 (open access)

Plant Wide Assessment for Johns Manville Waterville Ohio Plant 1

The report describes activites carried out at the palnt to identify energy savings in various energy user systems. The results list areas of energy savings potential and metods of energy savings.
Date: July 2, 2006
Creator: Kissock, Kelly & Thekdi, Arvind
Object Type: Report
System: The UNT Digital Library
Supported Molten Metal Catalysis. A New Class of Catalysts (open access)

Supported Molten Metal Catalysis. A New Class of Catalysts

We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to …
Date: June 2, 2006
Creator: Datta, Ravindra; Singh, Ajeet; Serban, Manuela & Halasz, Istvan
Object Type: Report
System: The UNT Digital Library
DIGITAL RADIOGRAPHY OF SPECIAL NUCLEAR MATERIAL TEST PACKAGES (open access)

DIGITAL RADIOGRAPHY OF SPECIAL NUCLEAR MATERIAL TEST PACKAGES

The purpose of this document is to provide a brief introduction to digital radiography (DR), and a description of the DR configuration that was used to radiographically image the Special Nuclear Material (SNM) Test Packages before and after function tests that have been conducted. Also included are (1) Attachment 1, a comprehensive index that describes at which phase of the certification process that digital radiographic images were acquired, (2) digital radiographic images of each of the six packages at various stages of the certification process, and (3) Attachment 2, imaging instructions, that specify the setup procedures and detailed parameters of the DR imaging methodology that were used.
Date: February 2, 2006
Creator: HOWARD, BOYD
Object Type: Report
System: The UNT Digital Library
MONITORED GEOLOGIC REPOSITORY SYSTEMS REQUIREMENTS DOCUMENT (open access)

MONITORED GEOLOGIC REPOSITORY SYSTEMS REQUIREMENTS DOCUMENT

This document establishes the Monitored Geologic Repository system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are based on the ''Civilian Radioactive Waste Management System Requirements Document'' (CRD) (DOE 2004a). The ''Monitored Geologic Repository Systems Requirements Document'' (MGR-RD) is developed in accordance with LP-3.3 SQ-OCRWM, ''Preparation, Review, and Approval of Office of Repository Development Requirements Document''. As illustrated in Figure 1, the MGR-RD forms part of the DOE Office of Civilian Radioactive Waste Management Technical Requirements Baseline. Revision 0 of this document identifies requirements for the current phase of repository design that is focused on developing a preliminary design for the repository and will be included in the license application submitted to the U.S. Nuclear Regulatory Commission for a repository at Yucca Mountain in support of receiving a construction authorization and subsequent operating license. As additional information becomes available, more detailed requirements will be identified in subsequent revisions to this document.
Date: June 2, 2006
Creator: Trebules, V.
Object Type: Report
System: The UNT Digital Library
Development of Bypassed Oil Reserves Using Behind Casing Resistivity Measurements (open access)

Development of Bypassed Oil Reserves Using Behind Casing Resistivity Measurements

Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased …
Date: April 2, 2006
Creator: Conner, Michael G. & Blesener, Jeffrey A.
Object Type: Report
System: The UNT Digital Library
Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region (open access)

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations …
Date: April 2, 2006
Creator: Crist, Kevin
Object Type: Report
System: The UNT Digital Library
B(S) LIFETIME DIFFERENCE MEASUREMENTS FROM THE TEVATRON. (open access)

B(S) LIFETIME DIFFERENCE MEASUREMENTS FROM THE TEVATRON.

The two collider experiments at the Tevatron, CDF and D0, have made a lot of progress in B{sub s} lifetime difference measurements. Here, they have included 3 different channels of measurements, namely, B{sub s} {yields} J/{psi} + {phi}, B{sub s} {yields} K{sup +}K{sup -} and B{sub s} {yields} D{sub s}{sup (*)+}D{sub s}{sup (*)-}. Combining all the available measurements, they have obtained {Delta}{Lambda}{sub s} = 0.097{sub -0.042}{sup +0.041} ps{sup -1} and {bar {tau}} = 1/{Lambda}{sub s} = 1.461 {+-} 0.030 ps. {Delta}{Lambda}{sub s} is now 2.3 {sigma} away from zero.
Date: July 2, 2006
Creator: YIP, K.
Object Type: Article
System: The UNT Digital Library
Errors Associated with the Direct Measurement of Radionuclides in Wounds (open access)

Errors Associated with the Direct Measurement of Radionuclides in Wounds

Work in radiation areas can occasionally result in accidental wounds containing radioactive materials. When a wound is incurred within a radiological area, the presence of radioactivity in the wound needs to be confirmed to determine if additional remedial action needs to be taken. Commonly used radiation area monitoring equipment is poorly suited for measurement of radioactive material buried within the tissue of the wound. The Lawrence Livermore National Laboratory (LLNL) In Vivo Measurement Facility has constructed a portable wound counter that provides sufficient detection of radioactivity in wounds as shown in Fig. 1. The LLNL wound measurement system is specifically designed to measure low energy photons that are emitted from uranium and transuranium radionuclides. The portable wound counting system uses a 2.5cm diameter by 1mm thick NaI(Tl) detector. The detector is connected to a Canberra NaI InSpector{trademark}. The InSpector interfaces with an IBM ThinkPad laptop computer, which operates under Genie 2000 software. The wound counting system is maintained and used at the LLNL In Vivo Measurement Facility. The hardware is designed to be portable and is occasionally deployed to respond to the LLNL Health Services facility or local hospitals for examination of personnel that may have radioactive materials within a …
Date: March 2, 2006
Creator: Hickman, D. P.
Object Type: Report
System: The UNT Digital Library
Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components (open access)

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and …
Date: March 2, 2006
Creator: Beardsley, M. Brad; Socie, Darrell; Redja, Ed & Berndt, Christopher
Object Type: Report
System: The UNT Digital Library
Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry (open access)

Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.
Date: March 2, 2006
Creator: Gutierrez, Thomas D.
Object Type: Article
System: The UNT Digital Library
ISCR FY2005 Annual Report (open access)

ISCR FY2005 Annual Report

Large-scale scientific computation and all of the disciplines that support and help validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of simulation as a fundamental tool of scientific and engineering research is underscored in the President's Information Technology Advisory Committee (PITAC) June 2005 finding that ''computational science has become critical to scientific leadership, economic competitiveness, and national security''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed, most notably the molecular dynamics simulation that sustained more than 100 Teraflop/s and won the 2005 Gordon Bell Prize. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use in an efficient manner. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of …
Date: February 2, 2006
Creator: Keyes, D E & McGraw, J R
Object Type: Report
System: The UNT Digital Library
Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays (open access)

Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays

Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.
Date: January 2, 2006
Creator: Hou, P.Y.; Paulikas, A.P. & Veal, B.W.
Object Type: Article
System: The UNT Digital Library
Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone (open access)

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloidassociated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments – the column and visualization experiments with colloids and the experiments with radionuclides – were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide …
Date: July 2, 2006
Creator: Saiers, James & Ryan, Joseph
Object Type: Report
System: The UNT Digital Library
A Resolution Analysis of Two Geophysical Imaging Methods For Characterizing and Monitoring Hydrologic Conditions in the Vadose Zone (open access)

A Resolution Analysis of Two Geophysical Imaging Methods For Characterizing and Monitoring Hydrologic Conditions in the Vadose Zone

The objective of this research project was to analyze the resolution of two geophysical imaging techniques: electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR) for monitoring subsurface flow and transport processes within the vadose zone. This was accomplished through a coupled approach involving very fine-scale unsaturated flow forward modeling, conversion of the resultant flow and solute fields to geophysical property models, forward geophysical modeling using the property model obtained from the last step to obtain synthetic geophysical data, and finally inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.
Date: August 2, 2006
Creator: D. Alumbaugh, D. LaBreque, J. Brainard and G. Hammond
Object Type: Report
System: The UNT Digital Library
Upgrade of Bnl Accelerator Facility. (open access)

Upgrade of Bnl Accelerator Facility.

None
Date: June 2, 2006
Creator: Ruggiero, A.
Object Type: Article
System: The UNT Digital Library
Analysis Procedures for Double-Shell Target Concentricity and Wall Thickness (open access)

Analysis Procedures for Double-Shell Target Concentricity and Wall Thickness

The LLNL Target Fabrication Team (TFT) asked the Center for Non-Destructive Characterization (CNDC) to use CNDC's KCAT or Xradia's Micro computed tomography (CT) system to collect three-dimensional (3D) tomographic data of a set of double-shell targets and determine, among other items, the following: (1) the concentricity of the outer surface of the inner shell with respect to the inner surface of the outer shell with an accuracy of 1-2 micrometers, and (2) the wall thickness uniformity of the outer shell with an accuracy of 1-2 micrometers. The CNDC used Xradia's Micro CT system to collect the data. Bill Brown performed the concentricity analysis, and John Sain performed the wall thickness uniformity analysis. Harry Martz provided theoretical guidance, and Dan Schneberk contributed technical (software) support. This document outlines the analysis procedures used in each case. The double-shell targets, as shown in Figures 1 and 2, consist of an inner shell (or capsule), a two-piece spherical aerogel intermediary shell, and a two-piece spherical outer shell. The three elements are designed and fabricated to be concentric--with the aerogel shell acting as a spacer between the inner shell and outer shell--with no to minimum air gaps in the final assembly. The outer diameters of …
Date: March 2, 2006
Creator: Sain, J D; Brown, W D; Martz, H E & Schneberk, D J
Object Type: Report
System: The UNT Digital Library
Challenges for Hadron (and Lepton) Non-Scaling Ffag. (open access)

Challenges for Hadron (and Lepton) Non-Scaling Ffag.

None
Date: June 2, 2006
Creator: Ruggiero, A.
Object Type: Article
System: The UNT Digital Library
DE-FG02-04ER84058 Final Report (open access)

DE-FG02-04ER84058 Final Report

The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm{sup 2}) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 {micro}m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, …
Date: March 2, 2006
Creator: Nagarkar, Vivek
Object Type: Report
System: The UNT Digital Library
FEM3A Model Development Quarterly Report: October-December 2005 (open access)

FEM3A Model Development Quarterly Report: October-December 2005

This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2005 to December 31, 2005. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and identified the questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is included in this section and the complete report from University of Arkansas is attached as Appendix A.
Date: February 2, 2006
Creator: Salehi, Iraj A.; Havens, Jerry & Spicer, Tom
Object Type: Report
System: The UNT Digital Library
High-Pressure/High-Temperature Studies of the Low-Z materials - Beryllium (open access)

High-Pressure/High-Temperature Studies of the Low-Z materials - Beryllium

The high-pressure/temperature phase diagrams of materials are largely unexplored. Combined laser heating/x-ray diffraction capabilities applied to diamond anvil cell experiment provide unique opportunities to study materials over a broad range of temperature (several 1000 K's) and pressure (several 100 GPa's). Of particular interest are high temperature phase transitions including solid-solid and melting transitions in geophysically and technologically important systems. Data derived from these experiments serve to extend our scientific understanding of materials and evaluate theoretical predictions. Using the laser heating (LH) and angle dispersive x-ray diffraction (ADXD) capabilities at BL10XU at SPring-8, we have studied several materials at high-pressure/temperature. This report will summarize results of our studies of solid-solid and melting transitions of beryllium at high pressures and high temperatures. The phase diagram of beryllium is largely unexplored, and the limited data that is available relies on indirect means to establish phase lines and phase transitions (see figure 1)[1]. At ambient pressure an hcp-bcc phase transition has been observed at 1523 K with a subsequent melt transition at 1551 K. Using electrical conductivity, Francois and Contre[2] inferred that the hcp-bcc phase line had a negative slope with pressure. It should be noted that this was established using indirect evidence, and …
Date: March 2, 2006
Creator: Evans, W. J. & Cynn, H.
Object Type: Report
System: The UNT Digital Library
Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line (open access)

Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.
Date: May 2, 2006
Creator: Stein, W.; Ahle, L. E. & Reyes, S.
Object Type: Report
System: The UNT Digital Library
Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U) (open access)

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.
Date: February 2, 2006
Creator: Chang, Robert
Object Type: Article
System: The UNT Digital Library
A Historical and Current Perspective on Predicting Thermal Cookoff Behavior (open access)

A Historical and Current Perspective on Predicting Thermal Cookoff Behavior

Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high explosives: [1] measurement of the reaction rate of small samples by mass loss (thermogravimetric analysis, TGA), heat release (differential scanning calorimetry, DSC), or evolved gas analysis (mass spectrometry, infrared spectrometry, etc.) or [2] inference from larger-scale experiments measuring the critical temperature (T{sub m}, lowest T for self-initiation), the time to explosion as a function of temperature, and sometimes a few other results, such as temperature profiles. Some of the basic principles of chemical kinetics involved are outlined, and major advances in these two approaches through the years are reviewed.
Date: June 2, 2006
Creator: Burnham, A K; Weese, R K; Wemhoff, A P & Maienschein, J L
Object Type: Article
System: The UNT Digital Library
The Structure of 12N using 11C + p resonance scattering (open access)

The Structure of 12N using 11C + p resonance scattering

The level structure of {sup 12}N has been investigated from 2.2 to 11.0 MeV in excitation energy using a {sup 11}C + p resonance interaction with thick targets and inverse kinematics. Excitation functions were fitted using an R-matrix approach. Sixteen levels in {sup 12}N were included in the analysis, several of them are new. Spin-parity assignments, excitation energies and widths are proposed for these levels. To fit the high energy part of the excitation function, imaginary phase shifts had to be added to the phase shifts generated by the hard sphere scattering.
Date: March 2, 2006
Creator: Perajarvi, K.; Chang, Bo Fu; Rogachev, G. V.; Chubarian, G.; Goldberg, V. Z.; Guo, Q. et al.
Object Type: Article
System: The UNT Digital Library