Degree Discipline

Language

4 Matching Results

Results open in a new window/tab.

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces (open access)

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
System: The UNT Digital Library
General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States. (open access)

General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States.

This study is based on survey responses of 224 general chemistry instructors at United States (U.S.) community colleges and universities representing 46 states. The mean values of General Chemistry Topic Coverage (GCTC) score, developed by this researcher specifically for this dissertation study as a measure of course content, were statistically analyzed. The aim of this study is to answer five research questions: (a) Is there a difference in mean GCTC scores between U.S. community colleges and four-year colleges and universities? (b) If there is a difference in mean GCTC score between the two study groups, what are the observed differences in subtopics covered between community colleges and four-year colleges and universities? (c) Considering both community colleges and universities, is there a difference in mean GCTC score between the different designated U.S. regions? (d) Considering both community college and university professors, is there a difference in GCTC score for professors with a master's degree compared to those with a doctorate?, and (e) Is there a correlation between GCTC score and the percentage of students that major in science? Results indicate that there is a statistically significant difference in course content between community colleges and universities, there is a statistically significant difference …
Date: December 2006
Creator: El-Ashmawy, Amina Khalifa
System: The UNT Digital Library

Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Access: Use of this item is restricted to the UNT Community
The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Date: December 2006
Creator: Kandala, Srikanth
System: The UNT Digital Library

Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry

Access: Use of this item is restricted to the UNT Community
To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(II)-citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for …
Date: August 2006
Creator: Nalla, Praveen Reddy
System: The UNT Digital Library