Degree Discipline

Degree Level

Language

Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry

Access: Use of this item is restricted to the UNT Community
To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(II)-citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for …
Date: August 2006
Creator: Nalla, Praveen Reddy
System: The UNT Digital Library
General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States. (open access)

General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States.

This study is based on survey responses of 224 general chemistry instructors at United States (U.S.) community colleges and universities representing 46 states. The mean values of General Chemistry Topic Coverage (GCTC) score, developed by this researcher specifically for this dissertation study as a measure of course content, were statistically analyzed. The aim of this study is to answer five research questions: (a) Is there a difference in mean GCTC scores between U.S. community colleges and four-year colleges and universities? (b) If there is a difference in mean GCTC score between the two study groups, what are the observed differences in subtopics covered between community colleges and four-year colleges and universities? (c) Considering both community colleges and universities, is there a difference in mean GCTC score between the different designated U.S. regions? (d) Considering both community college and university professors, is there a difference in GCTC score for professors with a master's degree compared to those with a doctorate?, and (e) Is there a correlation between GCTC score and the percentage of students that major in science? Results indicate that there is a statistically significant difference in course content between community colleges and universities, there is a statistically significant difference …
Date: December 2006
Creator: El-Ashmawy, Amina Khalifa
System: The UNT Digital Library