Month

Language

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2. (open access)

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Polystyrene (PS) nanocomposite foams were prepared using supercritical fluid (SCF) CO2 as a solvent and blowing agent. PS was first in-situ polymerized with a range of concentrations of montmorillonite layered silicate (MLS). The polymerized samples were then compression molded into 1 to 2mm thick laminates. The laminates were foamed in a batch supercritical CO2 process at various temperatures and pressures from 60°-85°C and 7.6-12MPa. The resulting foams were analyzed by scanning electron microscopy to determine effect of MLS on cellular morphology. Differential scanning calorimetry was used to determine the impact of nanocomposite microstructure on glass transition of the foamed polymer. X-ray diffraction spectra suggested that the PS/MLS composite had an intercalated structure at both the 1% and 3% mixtures, and that the intercalation may be enhanced by the foaming process.
Date: May 2005
Creator: Strauss, William C.
System: The UNT Digital Library
A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin. (open access)

A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin.

Single wall carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) were dispersed in mineral oil and epoxy resin. The magnetorheological properties of these dispersions were studied using a parallel plate rheometer. Strain sweeps, frequency sweeps, magneto sweeps and steady shear tests were conducted in various magnetic fields. G', G", h* and ty increased with increasing magnetic field, which was partially attributed to the increasing degree of the alignment of nanotubes in a stronger magnetic field. The SWNT/mo dispersions exhibited more pronounced magnetic field dependence than SWNT/ep and MWNT/mo counterparts due to their much lower viscosity. The alignment of SWNTs in mineral oil increased with rising nanotube concentration up to 2.5vol% but were significantly restricted at 6.41vol% due to nanotube flocculation.
Date: May 2005
Creator: Yang, Zhengtao
System: The UNT Digital Library

Functionalization and characterization of porous low-κ dielectrics.

Access: Use of this item is restricted to the UNT Community
The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica …
Date: May 2005
Creator: Orozco-Teran, Rosa Amelia
System: The UNT Digital Library