Month

Language

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site (open access)

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of the Weakly Interacting Massive Particles (WIMPs). For this purpose, CDMS uses detectors based on crystals of Ge and Si, operated at the temperature of 20 mK, and providing a two-fold signature of an interaction: the ionization and the athermal phonon signals. The two signals, along with the passive and active shielding of the experimental setup, and with the underground experimental sites, allow very effective suppression and rejection of different types of backgrounds. This dissertation presents the commissioning and the results of the first WIMP-search run performed by the CDMS collaboration at the deep underground site at the Soudan mine in Minnesota. We develop different methods of suppressing the dominant background due to the electron-recoil events taking place at the detector surface and we apply these algorithms to the data set. These results place the world's most sensitive limits on the WIMP-nucleon spin-independent elastic-scattering cross-section. Finally, they examine the compatibility of the supersymmetric WIMP-models with the direct-detection experiments (such as CDMS) and discuss the implications of the new CDMS result on these models.
Date: June 1, 2004
Creator: Mandic, Vuk
System: The UNT Digital Library
A search for neutral Higgs bosons at high tan beta in multi-jet events from p anti-p collisions at s**(1/2) = 1960-GeV (open access)

A search for neutral Higgs bosons at high tan beta in multi-jet events from p anti-p collisions at s**(1/2) = 1960-GeV

The Higgs mechanism preserves the gauge symmetries of the Standard Model while giving masses to the W, Z bosons. Supersymmetry, which protects the Higgs boson mass scale from quantum corrections, predicts at least 5 Higgs bosons, none of which has been directly observed. This thesis presents a search for neutral Higgs bosons, produced in association with bottom quarks. The production rate is greatly enhanced at large values of the Supersymmetric parameter tan {beta}. High-energy p{bar p} collision data, collected from Run II of the Fermilab Tevatron using the D0 detector, are analyzed. In the absence of a signal, values of tan {beta} > 80-120 are excluded at 95% Confidence Level (C.L.), depending on the (CP-odd) neutral Higgs boson mass (studied from 100 to 150 GeV/c{sup 2}).
Date: June 1, 2004
Creator: Haas, Andrew C. & /Washington U., Seattle
System: The UNT Digital Library
Study of 14O as a Test of the Unitarity of the CKM Matrix and the CVC Hypothesis (open access)

Study of 14O as a Test of the Unitarity of the CKM Matrix and the CVC Hypothesis

Abstract: The study of superallowed beta decay in nuclei, in conjunction with other experiments, provide a test of the unitarity of the quark mixing matrix or CKM matrix. Nonunitarity of the CKM matrix could imply the existence of a fourth generation of quarks, right handed currents in the weak interaction, and/or new exotic fermions. Advances in radioactive beam techniques allow the creation of nearly pure samples of nuclei for beta decay studies. The subject of this thesis is the development of a radioactive beam of 14O and the study of the 14O halflife and branching ratio. The radioactive beam is produced by ionizing 12C14O radioactive gas and then accelerating with an ECR ion source. The 14O nucleus decays via superallowed beta decay with a branching ratio > 99 percent. The low Z of 14O is important for calculating reliable corrections to the beta decay that generally increase in with Z. The > 99 percent branching ratio can be established with modest precision on the complementary branching ratio.When this work began the experimentally determined CKM matrix was nonunitary by 2.5 standard deviations. Recent studies of Kaon, Hyperon, and B meson decays have been used to determine Vus and Vub matrix elements. …
Date: June 1, 2004
Creator: Harke, Jason Timothy
System: The UNT Digital Library