Hydrophobic, fluorinated silica xerogel for low-k applications. (open access)

Hydrophobic, fluorinated silica xerogel for low-k applications.

A new hydrophobic hybrid silica film was synthesized by introducing one silicon precursor (as modifiers) into another precursor (network former). Hybrid films have improved properties. Hydrolysis and condensation of dimethyldiethoxysilane (DMDES) (solvent (EtOH) to DMDES molar ratio R = 4, water to DMDES molar ratio r = 4, 0.01 N HCl catalyst) was analyzed using high-resolution liquid 29Si NMR. It was found that after several hours, DMDES hydrolyzed and condensed into linear and cyclic species. Films from triethoxyfluorosilane (TEFS) have been shown to be promising interlayer dielectric materials for future integrated circuit applications due to their low dielectric constant and high mechanical properties (i.e., Young's modulus (E) and hardness (H)). Co-condensing with TEFS, linear structures from DMDES hydrolysis and condensation reactions rendered hybrid films hydrophobic, and cyclic structures induced the formation of pores. Hydrophobicity characterized by contact angle, thermal stability by thermogravimetric analysis (TGA), Fourier transform Infrared spectroscopy (FTIR), contact angle, and dynamic secondary ion mass spectroscopy (DSIMS), dielectric constant determined by impedance measurement, and mechanical properties (E and H) determined by nanoindentation of TEFS and TEFS + DMDES films were compared to study the effect of DMDES on the TEFS structure. Hybrid films were more hydrophobic and thermally stable. …
Date: May 2004
Creator: Zhang, Zhengping
System: The UNT Digital Library

Barrier and Long Term Creep Properties of Polymer Nanocomposites.

Access: Use of this item is restricted to the UNT Community
The barrier properties and long term strength retention of polymers are of significant importance in a number of applications. Enhanced lifetime food packaging, substrates for OLED based flexible displays and long duration scientific balloons are among them. Higher material requirements in these applications drive the need for an accurate measurement system. Therefore, a new system was engineered with enhanced sensitivity and accuracy. Permeability of polymers is affected by permeant solubility and diffusion. One effort to decrease diffusion rates is via increasing the transport path length. We explore this through dispersion of layered silicates into polymers. Layered silicates with effective aspect ratio of 1000:1 have shown promise in improving the barrier and mechanical properties of polymers. The surface of these inorganic silicates was modified with surfactants to improve the interaction with organic polymers. The micro and nanoscale dispersion of the layered silicates was probed using optical and transmission microscopy as well as x-ray diffraction. Thermal transitions were analyzed using differential scanning calorimetry. Mechanical and permeability measurements were correlated to the dispersion and increased density. The essential structure-property relationships were established by comparing semicrystalline and amorphous polymers. Semicrystalline polymers selected were nylon-6 and polyethylene terephthalate. The amorphous polymer was polyethylene terphthalate-glycol. Densification …
Date: December 2004
Creator: Ranade, Ajit
System: The UNT Digital Library
Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles. (open access)

Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles.

In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ~98 °C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH- sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH- sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a …
Date: December 2004
Creator: Zhou, Bo
System: The UNT Digital Library