Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature. (open access)

Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature.

Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation …
Date: December 2008
Creator: Karri, Avinash
System: The UNT Digital Library
Integrating environmental data acquisition and low cost Wi-Fi data communication. (open access)

Integrating environmental data acquisition and low cost Wi-Fi data communication.

This thesis describes environmental data collection and transmission from the field to a server using Wi-Fi. Also discussed are components, radio wave propagation, received power calculations, and throughput tests. Measured receive power resulted close to calculated and simulated values. Throughput tests resulted satisfactory. The thesis provides detailed systematic procedures for Wi-Fi radio link setup and techniques to optimize the quality of a radio link.
Date: December 2009
Creator: Gurung, Sanjaya
System: The UNT Digital Library
A New Wireless Sensor Node Design for Program Isolation and Power Flexibility (open access)

A New Wireless Sensor Node Design for Program Isolation and Power Flexibility

Over-the-air programming systems for wireless sensor networks have drawbacks that stem from fundamental limitations in the hardware used in current sensor nodes. Also, advances in technology make it feasible to use capacitors as the sole energy storage mechanism for sensor nodes using energy harvesting, but most current designs require additional electronics. These two considerations led to the design of a new sensor node. A microcontroller was chosen that meets the Popek and Goldberg virtualization requirements. The hardware design for this new sensor node is presented, as well as a preliminary operating system. The prototypes are tested, and demonstrated to be sustainable with a capacitor and solar panel. The issue of capacitor leakage is considered and measured.
Date: December 2009
Creator: Skelton, Adam W.
System: The UNT Digital Library
Implementation of Turbo Codes on GNU Radio (open access)

Implementation of Turbo Codes on GNU Radio

This thesis investigates the design and implementation of turbo codes over the GNU radio. The turbo codes is a class of iterative channel codes which demonstrates strong capability for error correction. A software defined radio (SDR) is a communication system which can implement different modulation schemes and tune to any frequency band by means of software that can control the programmable hardware. SDR utilizes the general purpose computer to perform certain signal processing techniques. We implement a turbo coding system using the Universal Software Radio Peripheral (USRP), a widely used SDR platform from Ettus. Detail configuration and performance comparison are also provided in this research.
Date: December 2010
Creator: Talasila, Mahendra
System: The UNT Digital Library
Design and Implementation of Communication Platform for Autonomous Decentralized Systems (open access)

Design and Implementation of Communication Platform for Autonomous Decentralized Systems

This thesis deals with the decentralized autonomous system, in which individual nodes acting like peers, communicate and participate in collaborative tasks and decision making processes. An experimental test-bed is created using four Garcia robots. The robots act like peers and interact with each other using user datagram protocol (UDP) messages. Each robot continuously monitors for messages coming from other robots and respond accordingly. Each robot broadcasts its location to all the other robots within its vicinity. Robots do not have built-in global positioning system (GPS). So, an indoor localization method based on signal strength is developed to estimate robot's position. The signal strength that the robot gets from the nearby wireless access points is used to calculate the robot's position. Trilateration and fingerprint are some of the indoor localization methods used for this purpose. The communication functionality of the decentralized system has been tested and verified in the autonomous systems laboratory.
Date: December 2010
Creator: Gottipati, Naga Sravani
System: The UNT Digital Library
Exploration Of Energy And Area Efficient Techniques For Coarse-grained Reconfigurable Fabrics (open access)

Exploration Of Energy And Area Efficient Techniques For Coarse-grained Reconfigurable Fabrics

Coarse-grained fabrics are comprised of multi-bit configurable logic blocks and configurable interconnect. This work is focused on area and energy optimization techniques for coarse-grained reconfigurable fabric architectures. In this work, a variety of design techniques have been explored to improve the utilization of computational resources and increase energy savings. This includes splitting, folding, multi-level vertical interconnect. In addition to this, I have also studied fully connected homogeneous and heterogeneous architectures, and 3D architecture. I have also examined some of the hybrid strategies of computation unit’s arrangements. In order to perform energy and area analysis, I selected a set of signal and image processing benchmarks from MediaBench suite. I implemented various fabric architectures on 90nm ASIC process from Synopsys. Results show area improvement with energy savings as compared to baseline architecture.
Date: December 2011
Creator: Yadav, Anil
System: The UNT Digital Library
Development of Silicon Nanowire Field Effect Transistors (open access)

Development of Silicon Nanowire Field Effect Transistors

An economically reliable technique for the synthesis of silicon nanowire was developed using silicon chloride as source material. The 30-40 micron long nanowires were found to have diameters ranging from 40 – 100 nm. An amorphous oxide shell covered the nanowires, post-growth. Raman spectroscopy confirmed the composition of the shell to be silicon-dioxide. Photoluminescence measurements of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell. Etching of the oxide shell was found to decrease the intensity of green emission. n-type doping of the silicon nanowires was achieved using antimony as the dopant. The maximum dopant concentration was achieved by post-growth diffusion. Intrinsic nanowire parameters were determined by implementation of the as-grown and antimony doped silicon nanowires in field effect transistor configuration.
Date: December 2011
Creator: Nukala, Prathyusha
System: The UNT Digital Library
Dual-band Microwave Components And Their Applications (open access)

Dual-band Microwave Components And Their Applications

In general, Dual-Band technology enables microwave components to work at two different frequencies. This thesis introduces novel dual-band microwave components and their applications. Chapter 2 presents a novel compact dual-band balun (converting unbalanced signals to balanced ones). The ratio between two working frequencies is analyzed. A novel compact microstrip crossover (letting two lines to cross each other with very high isolation) and its dual-band application is the subject of chapter 3. A dual-frequency cloak based on lumped LC-circuits is introduced in chapter 4. In chapter 5, a dual-band RF device to detect dielectric constant changes of liquids in polydimethylsiloxane (PDMS) microfluidic channels has been presented. Such a device is very sensitive, and it has significantly improved the stability. Finally, conclusion of this thesis and future works are given in chapter 6.
Date: December 2011
Creator: Shao, Jin
System: The UNT Digital Library
Hardware Implementation Of Conditional Motion Estimation In Video Coding (open access)

Hardware Implementation Of Conditional Motion Estimation In Video Coding

This thesis presents the rate distortion analysis of conditional motion estimation, a process in which motion computation is restricted to only active pixels in the video. We model active pixels as independent and identically distributed Gaussian process and inactive pixels as Gaussian-Markov process and derive the rate distortion function based on conditional motion estimation. Rate-Distortion curves for the conditional motion estimation scheme are also presented. In addition this thesis also presents the hardware implementation of a block based motion estimation algorithm. Block matching algorithms are difficult to implement on FPGA chip due to its complexity. We implement 2D-Logarithmic search algorithm to estimate the motion vectors for the image. The matching criterion used in the algorithm is Sum of Absolute Differences (SAD). VHDL code for the motion estimation algorithm is verified using ISim and is implemented using Xilinx ISE Design tool. Synthesis results for the algorithm are also presented.
Date: December 2011
Creator: Kakarala, Avinash
System: The UNT Digital Library
Communication System over Gnu Radio and OSSIE (open access)

Communication System over Gnu Radio and OSSIE

GNU Radio and OSSIE (Open-Source SCA (Software communication architecture) Implementation-Embedded) are two open source software toolkits for SDR (Software Defined Radio) developments, both of them can be supported by USRP (Universal Software Radio Peripheral). In order to compare the performance of these two toolkits, an FM receiver over GNU Radio and OSSIE are tested in my thesis, test results are showed in Chapter 4 and Chapter 5. Results showed that the FM receiver over GNU Radio has better performance, due to the OSSIE is lack of synchronization between USRP interface and the modulation /demodulation components. Based on this, the SISO (Single Input Single Output) communication system over GNU Radio is designed to transmit and receive sound or image files between two USRP equipped with RFX2400 transceiver at 2.45G frequency. Now, GNU Radio and OSSIE are widely used for academic research, but the future work based on GNU Radio and OSSIE can be designed to support MIMO, sensor network, and real time users etc.
Date: December 2011
Creator: Cheng, Zizhi
System: The UNT Digital Library
Development Of A Testbed For Multimedia Environmental Monitoring (open access)

Development Of A Testbed For Multimedia Environmental Monitoring

Multimedia environmental monitoring involves capturing valuable visual and audio information from the field station. This will permit the environmentalists and researchers to analyze the habitat and vegetation of a region with respect to other environmental specifics like temperature, soil moisture, etc. This thesis deals with the development of a test bed for multimedia monitoring by capturing image information and making it available for the public. A USB camera and a Single board computer are used to capture images at a specified frequency. A web-client is designed to display the image data and establish a secured remote access to reconfigure the field station. The development includes two modes of image acquisition including a basic activity recognition algorithm. Good quality images are captured with the cost for development of the system being less than 2 hundred dollars.
Date: December 2011
Creator: Kandula, Harsha
System: The UNT Digital Library
Development of Indium Oxide Nanowires as Efficient Gas Sensors (open access)

Development of Indium Oxide Nanowires as Efficient Gas Sensors

Crystalline indium oxide nanowires were synthesized following optimization of growth parameters. Oxygen vacancies were found to impact the optical and electronic properties of the as-grown nanowires. Photoluminescence measurements showed a strong U.V emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. The defect peaks are attributed to neutral and charged states of oxygen vacancies. Post-growth annealing in oxygen environment and passivation with sulphur are shown to be effective in reducing the intensity of the defect induced emission. The as-grown nanowires connected in an FET type of configuration shows n-type conductivity. A single indium oxide nanowire with ohmic contacts was found to be sensitive to gas molecules adsorbed on its surface.
Date: December 2011
Creator: Gali, Pradeep
System: The UNT Digital Library
Development of Wireless Sensor Network System for Indoor Air Quality Monitoring (open access)

Development of Wireless Sensor Network System for Indoor Air Quality Monitoring

This thesis describes development of low cost indoor air quality (IAQ) monitoring system for research. It describes data collection of various parameters concentration present in indoor air and sends data back to host PC for further processing. Thesis gives detailed information about hardware and software implementation of IAQ monitoring system. Also discussed are building wireless ZigBee network, creating user friendly graphical user interface (GUI) and analysis of obtained results in comparison with professional benchmark system to check system reliability. Throughputs obtained are efficient enough to use system as a reliable IAQ monitor.
Date: December 2012
Creator: Borkar, Chirag
System: The UNT Digital Library
Characterization of Ecg Signal Using Programmable System on Chip (open access)

Characterization of Ecg Signal Using Programmable System on Chip

Electrocardiography (ECG) monitor is a medical device for recording the electrical activities of the heart using electrodes placed on the body. There are many ECG monitors in the market but it is essential to find the accuracy with which they generate results. Accuracy depends on the processing of the ECG signal which contains several noises and the algorithms used for detecting peaks. Based on these peaks the abnormality in the functioning of the heart can be estimated. Hence this thesis characterizes the ECG signal which helps to detect the abnormalities and determine the accuracy of the system.
Date: December 2012
Creator: Ravuru, Anusha
System: The UNT Digital Library
Parameter Estimation Using Consensus Building Strategies with Application to Sensor Networks (open access)

Parameter Estimation Using Consensus Building Strategies with Application to Sensor Networks

Sensor network plays a significant role in determining the performance of network inference tasks. A wireless sensor network with a large number of sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in WSN is developing an efficient protocol which has a significant impact on the convergence of the network. Parameter estimation is one of the most important applications of sensor network. In order to model such large and complex networks for estimation, efficient strategies and algorithms which take less time to converge are being developed. To deal with this challenge, an approach of having multilayer network structure to estimate parameter and reach convergence in less time is estimated by comparing it with known gossip distributed algorithm. Approached Multicast multilayer algorithm on a network structure of Gaussian mixture model with two components to estimate parameters were compared and simulated with gossip algorithm. Both the algorithms were compared based on the number of iterations the algorithms took to reach convergence by using Expectation Maximization Algorithm.Finally a series of theoretical and practical results that explicitly showed that Multicast works better than gossip in large and complex networks for estimation in consensus …
Date: December 2013
Creator: Dasgupta, Kaushani
System: The UNT Digital Library
A Comprehensive Modeling Framework for Airborne Mobility (open access)

A Comprehensive Modeling Framework for Airborne Mobility

Mobility models serve as the foundation for evaluating and designing airborne networks. Due to the significant impact of mobility models on the network performance, mobility models for airborne networks (ANs) must realistically capture the attributes of ANs. In this paper, I develop a comprehensive modeling framework for ANs. The work I have done is concluded as the following three parts. First, I perform a comprehensive and comparative analysis of AN mobility models and evaluate the models based on several metrics: 1) networking performance, 2) ability to capture the mobility attributes of ANs, 3) randomness levels and 4) associated applications. Second, I develop two 3D mobility models and realistic boundary models. The mobility models follow physical laws behind aircraft maneuvering and therefore capture the characteristics of aircraft trajectories. Third, I suggest an estimation procedure to extract parameters in one of the models that I developed from real flight test data. The good match between the estimated trajectories and real flight trajectories also validate the suitability of the model. The mobility models and the estimation procedure lead to the creation of “realistic” simulation and evaluation environment for airborne networks.
Date: December 2013
Creator: Xie, Junfei
System: The UNT Digital Library
A 018μm Cmos Transmitter for Ecg Signals (open access)

A 018μm Cmos Transmitter for Ecg Signals

Electrocardiography (ECG) signal transmitter is the device used to transmit the electrical signals of the heart to the remote machine. These electrical signals are ECG signals caused due to electrical activities in the heart. ECG signals have very low amplitude and frequency; hence amplification of the signals is needed to strengthen the signal. Conversion of the amplified signal into digital information and transmitting that information without losing any data is the key. This information is further used in monitoring the heart.
Date: December 2013
Creator: Kakarna, Tejaswi
System: The UNT Digital Library
Networking and Decentralized Control in Layered Networks: a Theoretical Study and Test-bed Development (open access)

Networking and Decentralized Control in Layered Networks: a Theoretical Study and Test-bed Development

Layered structures are commonly used in communication systems, but their roles in decentralized control are not understood well. In the first part of this thesis, a theoretical study of consensus (a typical decentralized control task) in layered structures is conducted. The unique graph topology approach permits explicit characterization of consensus performance based on simple graphical characteristics of MLMG structures. In the second part of this thesis, a generic LEGO test-bed to mimic multi-domain communication with layered structures is described. A search-and-rescue scenario is implemented to demonstrate the use of the test-bed.
Date: December 2014
Creator: Sheth, Vardhman Jayeshkumar
System: The UNT Digital Library
Optimal Sensor Placement for Structural Health Monitoring (open access)

Optimal Sensor Placement for Structural Health Monitoring

In large-scale civil structures, a limited number of sensors are placed to monitor the health of civil structures to reduce maintenance, communication and energy costs. In this thesis, the problem of optimal sensor location placement to infer the health of civil structures is explored. First, a comparative study of approaches from the fields of control engineering and civil engineering is conducted . The widely used civil engineering approaches such as effective independence (EI) and modal assurance criterion (MAC) have limitations because of the negligence of modes and damping parameters. On the other hand, control engineering approaches consider the entire system dynamics using impulse response-type sensor measurement data. Such inference can be formulated as an estimation problem, with the dynamics formulated as a second-order differential equation. The comparative study suggests that damping dynamics play significant impact to the selection of best sensor location---the civil engineering approaches that neglect the damping dynamics lead to very different sensor locations from those of the control engineering approaches. In the second part of the thesis, an initial attempt to directly connect the topological graph of the structure (that defines the damping and stiffness matrices) and the second-order dynamics is conducted.
Date: December 2014
Creator: Movva, Gopichand
System: The UNT Digital Library
Reliability of Electronics (open access)

Reliability of Electronics

The purpose of this research is not to research new technology but how to improve existing technology and understand how the manufacturing process works. Reliability Engineering fall under the category of Quality Control and uses predictions through statistical measurements and life testing to figure out if a specific manufacturing technique will meet customer satisfaction. The research also answers choice of materials and choice of manufacturing process to provide a device that will not only meet but exceed customer demand. Reliability Engineering is one of the final testing phases of any new product development or redesign.
Date: December 2014
Creator: Wickstrom, Larry E.
System: The UNT Digital Library
Parameter Estimation of Microwave Filters (open access)

Parameter Estimation of Microwave Filters

The focus of this thesis is on developing theories and techniques to extract lossy microwave filter parameters from data. In the literature, the Cauchy methods have been used to extract filters’ characteristic polynomials from measured scattering parameters. These methods are described and some examples are constructed to test their performance. The results suggest that the Cauchy method does not work well when the Q factors representing the loss of filters are not even. Based on some prototype filters and the relationship between Q factors and the loss, we conduct preliminary studies on alternative representations of the characteristic polynomials. The parameters in these new models are extracted using the Levenberg–Marquardt algorithm to accurately estimate characteristic polynomials and the loss information.
Date: December 2015
Creator: Sun, Shuo
System: The UNT Digital Library
Analysis of Pre-ictal and Non-Ictal EEG Activity: An EMOTIV and LabVIEW Approach (open access)

Analysis of Pre-ictal and Non-Ictal EEG Activity: An EMOTIV and LabVIEW Approach

In the past few years, the study of electrical activity in the brain and its interactions with the body has become popular among researchers. One of the hottest topics related to brain activity is the epileptic seizure prediction. Currently, there are several techniques on how to predict a seizure; however, most of the techniques found in research papers are just mathematical models and not system implementations. The seizure prediction approach proposed in this thesis paper is achieved using the EMOTIV Epoc+ headset, MATLAB, and LabVIEW as the analog and digital signal processing devices. In addition, this thesis project incorporates the use of the Hilbert Huang transform (HHT) method to obtain intrinsic mode functions (IMF) and instantaneous frequency components of the transform. From the IMFs, features as variation coefficient (VC) and fluctuation indexes (FI) are extracted to feed a support vector machine that classifies the EEG data as pre-ictal and non-ictal EEGs. Outstanding patterns in non-ictal and pre-ictal are observed and demonstrated by significant differences between both types of EEG signals. In other words, a classification of EEG signals according to a category can be achieved proving that an epileptic seizure prediction technology has a future in engineering and biotechnology fields.
Date: December 2016
Creator: Medina, Oscar F
System: The UNT Digital Library
Arduino Based Hybrid MPPT Controller for Wind and Solar (open access)

Arduino Based Hybrid MPPT Controller for Wind and Solar

Renewable power systems are becoming more affordable and provide better options than fossil-fuel generation, for not only the environment, but a benefit of a reduced cost of operation. Methods to optimize charging batteries from renewable technologies is an important subject for off-grid and micro-grids, and is becoming more relevant for larger installations. Overcharging or undercharging the battery can result in failure and reduction of battery life. The Arduino hybrid MPPT controller takes the advantage of solar and wind energy sources by controlling two systems simultaneously. The ability to manage two systems with one controller is better for an overall production of energy, cost, and manageability, at a minor expense of efficiency. The hybrid MPPT uses two synchronous buck DC-DC converters to control both wind and solar. The hybrid MPPT performed at a maximum of 93.6% efficiency, while the individual controller operated at a maximum 97.1% efficiency when working on the bench test. When designing the controller to manage power production from a larger generator, the inductor size was too large due to the frequency provided by the Arduino. A larger inductor means less allowable current to flow before the inductor becomes over saturated, reducing the efficiency of the controller. Utilizing …
Date: December 2017
Creator: Assaad, Michael
System: The UNT Digital Library
Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios (open access)

Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios

One statement that we can make with absolute certainty in our current time is that wireless communication is now the standard and the de-facto type of communication. Cognitive radios are able to interpret the frequency spectrum and adapt. The aim of this work is to be able to predict whether a frequency channel is going to be busy or free in a specific time located in the future. To do this, the problem is modeled as a time series problem where each usage of a channel is treated as a sequence of busy and free slots in a fixed time frame. For this time series problem, the method being implemented is one of the latest, state-of-the-art, technique in machine learning for time series and sequence prediction: long short-term memory neural networks, or LSTMs.
Date: December 2017
Creator: Hernandez Villapol, Jorge Luis
System: The UNT Digital Library