Resource Type

Month

Language

Dissolution test for low-activity waste product acceptance. (open access)

Dissolution test for low-activity waste product acceptance.

We have measured the mean and standard deviation of the solution concentrations of B, Na, and Si attained in replicate dissolution tests conducted at temperatures of 20, 40, and 70 C, for durations of 3 and 7 days, and at glass/water mass ratios of 1:10 and 1:1. These and other tests were conducted to evaluate the adequacy of the test methods specified in privatization contracts and to develop a data base that can be used to evaluate the reliability of reported results for tests performed on the waste products. Tests were conducted with a glass that we formulated to be similar to low-activity waste products that will be produced during the remediation of Hanford tank wastes. Statistical analyses indicated that, while the mean concentrations of B, Na, and Si were affected by the values of test parameters, the standard deviation of replicate tests was not. The precision of the tests was determined primarily by uncertainties in the analysis of the test solutions. Replicate measurements of other glass properties that must be reported for Hanford low-activity waste products were measured to evaluate the possible adoption of the glass used in these tests as a standard test material for the product acceptance …
Date: May 20, 1998
Creator: Ebert, W. L.
System: The UNT Digital Library
Parallelization of an unstructured grid, hydrodynamic-diffusion code (open access)

Parallelization of an unstructured grid, hydrodynamic-diffusion code

We describe the parallelization of a three dimensional, un structured grid, finite element code which solves hyperbolic conservation laws for mass, momentum, and energy, and diffusion equations modeling heat conduction and radiation transport. Explicit temporal differencing advances the cell-based gasdynamic equations. Diffusion equations use fully implicit differencing of nodal variables which leads to large, sparse, symmetric, and positive definite matrices. Because of the unstructured grid, the off-diagonal non-zero elements appear in unpredictable locations. The linear systems are solved using parallelized conjugate gradients. The code is parailelized by domain decomposition of physical space into disjoint subdomains (SDS). Each processor receives its own SD plus a border of ghost cells. Results are presented on a problem coupling hydrodynamics to non-linear heat cond
Date: May 20, 1998
Creator: Milovich, J L & Shestakov, A
System: The UNT Digital Library