Language

762 Matching Results

Results open in a new window/tab.

A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems (open access)

A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems

Calculations were performed on transition-metal complexes to (1) extrapolate the structure and bonding of the ground and phosphorescent states (2) determine the luminescence energies and (3) assist in difficult assignment of luminescent transitions. In the [Pt(SCN)4]2- complex, calculations determined that the major excited-state distortion is derived from a b2g bending mode rather than from the a1g symmetric stretching mode previously reported in the literature. Tuning of excimer formation was explained in the [Au(SCN)2]22- by interactions with the counterion. Weak bonding interactions and luminescent transitions were explained by calculation of Hg dimers, excimers and exciplexes formed with noble gases.
Date: December 2007
Creator: Sinha, Pankaj
System: The UNT Digital Library
Synthesis and Characterization of 2,3-Dichloropyrrolo[1,2-a]benzimidazol-1-one and Its Methylthiol Derivatives (open access)

Synthesis and Characterization of 2,3-Dichloropyrrolo[1,2-a]benzimidazol-1-one and Its Methylthiol Derivatives

Condensation of 2,3-dichloromaleic anhydride and o-phenylenediamine in refluxing toluene affords the three compounds 2,3-dichloro-N-o-C6H4(NH2)maleimide (1), N,N¢-o-C6H4-bis(2,3-dichloromaleimide) (2), and 2,3-dichloropyrrolo[1,2-a]benzimidazol-1-one (3), with compound 1 as the major product. Repeating the same reaction in the presence of added PTSA furnishes compound 3 as the major product. Treatment of 3 with methylthiol in the presence of pyridine affords monosulfide compounds 2-chloro-3-methylthiopyrrolo[1,2-a]benzimidazol-1-one (4) and and the disulfide derivatives 2,3-di(methylthio)pyrrolo[1,2-a]benzimidazol-1-one (5). The substitution of the first chlorine group in compound 3 occurs regioselectively at C-3 to produce compound 4, followed by replacement of the remaining chlorine group to furnish the disulfide compounds 5. The new compounds 1-5 have been isolated by column chromatography and characterized by IR, NMR, XRD, CV and etc.
Date: May 2006
Creator: Wu, Guanmin
System: The UNT Digital Library
The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels. (open access)

The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels.

Homogeneous hydrogels made of an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAm) and poly(acrylic acid) (PAAc) are synthesized by a two-step process; first making PNIPAm hydrogels and then interpenetrating acrylic acid throughout the hydrogel through polymerization. The kinetic growth of the IPN is plotted and an equation is fitted to the data. When diluted to certain concentrations in water, the hydrogels show reversible, inverse thermal gelation at about 34°C. This shows unique application to the medical field, as the transition is just below body temperature. A drug release experiment is performed using high molecular weight dyes, and a phase diagram is created through observation of the purified, concentrated gel at varying concentrations and temperatures.
Date: August 2006
Creator: Crouch, Stephen Wallace
System: The UNT Digital Library
Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores (open access)

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of …
Date: August 2006
Creator: El-Bjeirami, Oussama
System: The UNT Digital Library
Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces (open access)

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
System: The UNT Digital Library
Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects (open access)

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Date: August 2006
Creator: Stovall, Dawn Michele
System: The UNT Digital Library

Studies of spin alignment in ferrocenylsilane compounds and in regiospecific oxidation reactions of 1,9-dimethylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione.

Access: Use of this item is restricted to the UNT Community
Part I. The syntheses of a series of stable ferrocenylsilane compounds and their corresponding polyradical cations are reported. Electron spin properties of these molecules were investigated by cyclic voltammetry, ESR, and magnetic susceptibility measurements. All the compounds presented, showed significant electronic communication (>100 mV) between the redox centers by CV. Part II. Baeyer-Villiger oxidation of (1,9-dimethyl-PCU-8,11-dione) was performed using m-chloroperoxybenzoic acid in 1:2 molar ratios. The product obtained was the corresponding dilactone 113. The structure of the reaction products was established unequivocally via single crystal X-ray diffraction methods. The reaction of the 1,9-dimethyl-PCU-8,11-dione with 1:1 molar ratio of m-chloroperoxybenzoic acid produced again the dilactone 113, and not the expected monolactone 114. Ceric ammonium nitrate (CAN) promoted oxidation reaction of 1,9-dimethyl-PCU-8,11-dione afforded a mixture of dimethylated lactones, which indicated unique reaction mechanism pathways. These individual isomers, 115 and 116, have been isolated from these mixtures via column chromatography by using silica gel as adsorbent followed by fractional recrystallization of individual chromatography fractions. Structures of these pure products have been established unequivocally by application of single crystal X-ray crystallographic methods.
Date: August 2006
Creator: Atim, Silvia
System: The UNT Digital Library
General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States. (open access)

General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States.

This study is based on survey responses of 224 general chemistry instructors at United States (U.S.) community colleges and universities representing 46 states. The mean values of General Chemistry Topic Coverage (GCTC) score, developed by this researcher specifically for this dissertation study as a measure of course content, were statistically analyzed. The aim of this study is to answer five research questions: (a) Is there a difference in mean GCTC scores between U.S. community colleges and four-year colleges and universities? (b) If there is a difference in mean GCTC score between the two study groups, what are the observed differences in subtopics covered between community colleges and four-year colleges and universities? (c) Considering both community colleges and universities, is there a difference in mean GCTC score between the different designated U.S. regions? (d) Considering both community college and university professors, is there a difference in GCTC score for professors with a master's degree compared to those with a doctorate?, and (e) Is there a correlation between GCTC score and the percentage of students that major in science? Results indicate that there is a statistically significant difference in course content between community colleges and universities, there is a statistically significant difference …
Date: December 2006
Creator: El-Ashmawy, Amina Khalifa
System: The UNT Digital Library

Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Access: Use of this item is restricted to the UNT Community
The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Date: December 2006
Creator: Kandala, Srikanth
System: The UNT Digital Library
Computational Studies of Coordinatively Unsaturated Transition Metal Complexes (open access)

Computational Studies of Coordinatively Unsaturated Transition Metal Complexes

In this research the validity of various computational techniques has been determined and applied the appropriate techniques to investigate and propose a good catalytic system for C-H bond activation and functionalization. Methane being least reactive and major component of natural gas, its activation and conversion to functionalized products is of great scientific and economic interest in pure and applied chemistry. Thus C-H activation followed by C-C/C-X functionalization became crux of the synthesis. DFT (density functional theory) methods are well suited to determine the thermodynamic as well as kinetic factors of a reaction. The obtained results are helpful to industrial catalysis and experimental chemistry with additional information: since C-X (X = halogens) bond cleavage is important in many metal catalyzed organic syntheses, the results obtained in this research helps in determining the selectivity (kinetic or thermodynamic) advantage. When C-P bond activation is considered, results from chapter 3 indicated that C-X activation barrier is lower than C-H activation barrier. The results obtained from DFT calculations not only gave a good support to the experimental results and verified the experimentally demonstrated Ni-atom transfer mechanism from Ni=E (E = CH2, NH, PH) activating complex to ethylene to form three-membered ring products but also validated …
Date: December 2006
Creator: Vaddadi, Sridhar
System: The UNT Digital Library
The evaluation, development, and application of the correlation consistent basis sets. (open access)

The evaluation, development, and application of the correlation consistent basis sets.

Employing correlation consistent basis sets coupled with electronic structure methods has enabled accurate predictions of chemical properties for second- and third-row main group and transition metal molecular species. For third-row (Ga-Kr) molecules, the performance of the correlation consistent basis sets (cc-pVnZ, n=D, T, Q, 5) for computing energetic (e.g., atomization energies, ionization energies, electron and proton affinities) and structural properties using the ab initio coupled cluster method including single, double, and quasiperturbative triple excitations [CCSD(T)] and the B3LYP density functional method was examined. The impact of relativistic corrections on these molecular properties was determined utilizing the Douglas-Kroll (cc-pVnZ-DK) and pseudopotential (cc-pVnZ-PP) forms of the correlation consistent basis sets. This work was extended to the characterization of molecular properties of novel chemically bonded krypton species, including HKrCl, FKrCF3, FKrSiF3, FKrGeF3, FKrCCF, and FKrCCKrF, and provided the first evidence of krypton bonding to germanium and the first di-krypton system. For second-row (Al-Ar) species, the construction of the core-valence correlation consistent basis sets, cc-pCVnZ was reexamined, and a revised series, cc-pCV(n+d)Z, was developed as a complement to the augmented tight-d valence series, cc-pV(n+d)Z. Benchmark calculations were performed to show the utility of these new sets for second-row species. Finally, the correlation consistent basis …
Date: December 2006
Creator: Yockel, Scott
System: The UNT Digital Library

Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Access: Use of this item is restricted to the UNT Community
An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also …
Date: May 2003
Creator: Arunagiri, Tiruchirapalli Natarajan
System: The UNT Digital Library

Synthesis and Properties of Novel Cage-Annulated Crown Ethers

Access: Use of this item is restricted to the UNT Community
Three cage-functionalized polyoxacrown ethers (9, 10 and 12) and four novel cage-functionalized polyoxamonoazacrown ethers (18, 20, 25 and 29) that contain 3,5-disubstituted-4-oxahexacyclo[5.4.0.02,6.03,10.05,9.08,11]dodecane ("oxahexacyclic") moiety have been synthesized and their respective alkali metal picrate extraction profiles along with that of three analogues 13, 14 and 21 have been obtained. The observed avidities and selectivities of the host molecules toward complexation and transport of alkali metal picrates can be related to the size and shape of their respective macrocyclic cavity and the number of donor atoms. The effect of N-alkyl substitution on the complexation properties of azacrown ethers has been studied. The avidity of N-Et azacrown ethers toward complexation with alkali metal cations is generally higher than that of the corresponding non-N-alkylated hosts. However, the presence of an N-Et group appears to have a negligible effect upon their relative selectivities in their regards. The effect of pH on extraction process was studied; it was thereby determined that the alkali metal picrate extraction experiments are best performed at high pH (ca. 11-12).
Date: May 2003
Creator: Huang, Zilin
System: The UNT Digital Library

Effects of Web-based Instruction in High School Chemistry.

Access: Use of this item is restricted to the UNT Community
The intent of this study is to identify correlations that might exist between Web-based instruction and higher assessment scores in secondary education. The study framework was held within the confines of a public high school chemistry classroom. Within this population there were students identified as gifted and talented (GT) as well as those without this designation. These two classifications were examined for statistically higher assessment scores using a two-tailed t-test. Results indicated that females outperformed males on pre- and post- instructional unit tests. All subgroups improved their logical-thinking skills and exhibited positive attitudes towards Web-based instruction. In general, Web-based instruction proved beneficial to improving classroom performance of all GT and non-GT groups as compared to traditional classroom instruction.
Date: May 2003
Creator: Stratton, Eric W.
System: The UNT Digital Library

Passivation effects of surface iodine layer on tantalum for the electroless copper deposition.

Access: Use of this item is restricted to the UNT Community
The ability to passivate metallic surfaces under non-UHV conditions is not only of fundamental interests, but also of growing practical importance in catalysis and microelectronics. In this work, the passivation effect of a surface iodine layer on air-exposed Ta for the copper electroless deposition was investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Although the passivation effect was seriously weakened by the prolonged air exposure, iodine passivates the Ta substrate under brief air exposure conditions so that enhanced copper wetting and adhesion are observed on I-passivated Ta relative to the untreated surface.
Date: May 2004
Creator: Liu, Jian
System: The UNT Digital Library

Electrodeposition of adherent copper film on unmodified tungsten.

Access: Use of this item is restricted to the UNT Community
Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small …
Date: May 2004
Creator: Wang, Chen
System: The UNT Digital Library

Modeling wild type and mutant glutathione synthetase.

Access: Use of this item is restricted to the UNT Community
Glutathione syntethase (GS) is an enzyme that belongs to the ATP-grasp superfamily and catalyzes the second step in the biosynthesis of glutathione. GS has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. Four highly conserved residues were identified in the binding site of human GS. Additionally, the G-loop residues that close the active site during catalysis were found to be conserved. Since these residues are important for catalysis, their function was studied computationally by site-directed mutagenesis. Starting from the reported crystal structure of human GS, different conformations for the wild type and mutants were obtained using molecular dynamics technique. The key interactions between residues and ligands were detected and found to be essential for enzyme activity.
Date: August 2004
Creator: Dinescu, Adriana
System: The UNT Digital Library

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Access: Use of this item is restricted to the UNT Community
An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 …
Date: August 2005
Creator: Lei, Jipu
System: The UNT Digital Library

The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

Access: Use of this item is restricted to the UNT Community
Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small …
Date: August 2005
Creator: Wang, Chen
System: The UNT Digital Library

Synthesis and Complexation Studies of Novel Functionalized Crown Ethers and Azacrown Ethers

Access: Use of this item is restricted to the UNT Community
Novel cage-functionalized azacrown ethers, i.e. 51, 52, 53, 55, 57, 61 and 62, which have various crown cavity and different number of nitrogen atoms incorporated, have been prepared. X-ray structures of 53, 55 and 57 have been obtained for the study of the crown topological structure. The complexation properties of crown 51, 52, 57, 61 and 62 have been evaluated via alkali metal picrate extraction, silver picrate extraction and ESI-MS study. The novel cage-fuctionalized azacrown ethers generally exhibit high avidity and selectivity towards Ag+ versus alkali metal ions and some transition metals i.e. Cu2+, Mn2+, Zn2+, Ni2+ and Pb2+. Crown 61 displays significant avidity and selectivity toward K+ in alkali metal picrate extraction experiments vis-à-vis the remaining alkali metal picrates. Three types of ditopic ion-exchange receptors for sodium hydroxide extraction study have been designed. All of the crown ether molecules have proper cavity for selective sodium complexation and have weakly acidic ionizable alcohols for sodium-proton exchange under strongly basic conditions. Crown 80 and 81 were synthesized; key intermediates for the synthesis of crown 82, 83 and 84 have been prepared. The preparation of 99 afforded an unexpected crown 103. The preparation of 109 had been attempted, but could not be …
Date: May 2006
Creator: Huang, Zilin
System: The UNT Digital Library

Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry

Access: Use of this item is restricted to the UNT Community
To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(II)-citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for …
Date: August 2006
Creator: Nalla, Praveen Reddy
System: The UNT Digital Library

Synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers and reaction chemistry of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at triosmium carbonyl clusters.

Access: Use of this item is restricted to the UNT Community
Quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers have been synthesized as possible specific metal host systems. The synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers have been described. The characterization of these host systems have been fully achieved in solution by using various techniques such as IR, 1H NMR, and 13C NMR spectroscopic methods, high-resolution mass spectrometry (HRMS), elemental microanalysis, and X-ray crystallographic analysis in case of one quinoxaline-functionalized, cage-annulated oxacrown ether compound. The synthesis of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) is described. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligand bmi proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(bmi) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)N(tolyl-p)C(O)]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(bmi) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(bmi), whose molecular structure has been determined by X-ray crystallography. The kinetics for the ligand isomerization have been investigated by UV-vis and 1H NMR spectroscopy in toluene solution over the temperature range of 318-348 K. On the basis of kinetic data conducted in the presence of added CO and the Eyring activation parameters, a non-dissociative phosphine migration across one of the Os-Os bonds is proposed. Orthometalation of …
Date: December 2006
Creator: Poola, Bhaskar
System: The UNT Digital Library

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Access: Use of this item is restricted to the UNT Community
The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead …
Date: December 2006
Creator: Yuan, Qiuhua
System: The UNT Digital Library
ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds. (open access)

ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

An extensive study of disubstituted cycloalkanes like CnH2n where n=3,4,5 and 6 using DFT((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations is presented focusing on the effect of pyramidalization of the radical center. A potential energy surface (PES) analysis shows that the radical prefers to pyramidalize anti to the two cis fluorines in the disubstituted cycloalkanes. The degree of pyramidalization for 1,2-difluorocyclopropyl radical is 43.9o away from the cis fluorines whereas for 1,3-difluorocyclobutyl radical, 1,3-difluorocyclopentyl radical and 1,3-difluorocyclohexyl radical is 3.8o, 5.4o and 14.5o respectively away from the cis fluorines. The importance of this pyramidality effect in these compounds is discussed in context with the carbon-hydrogen bond dissociation energies (BDE's) because the preference of the radical centers to pyramidalize anti to the fluorines affects the bond dissociation energy. Importance of steric effect and unfavorable electronic interactions have been extensively explored in planar permethylated cyclobutadiene (Me4CBD) and cyclooctatetraene (Me8COT) using ((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations. It is thought that steric interactions dominate electronic interactions in Me8COT, while this works opposite in case of Me4CBT. Instead, in Me4CBD the number of unfavorable electronic interactions between π bonds and out-of-plane hydrogens plays the dominant role in determining the relative energies. Interactions between the π bonds of CBD and …
Date: May 2008
Creator: Tanna, Jigisha
System: The UNT Digital Library