A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor (open access)

A VUV Photoionization Study of the Combustion-Relevant Reaction of the Phenyl Radical (C6H5) with Propylene (C3H6) in a High Temperature Chemical Reactor

We studied the reaction of phenyl radicals (C6H5) with propylene (C3H6) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 1,200-1,500 K). The reaction products were probed in a supersonic beam by utilizing tunable vacuum ultraviolet (VUV) radiation from the Advanced Light Source and recording the photoionization efficiency (PIE) curves at mass-to-charge ratios of m/z = 118 (C9H10+) and m/z = 104 (C8H8+). Our results suggest that the methyl and atomic hydrogen losses are the two major reaction pathways with branching ratios of 86 10 percent and 14 10 percent. The isomer distributions were probed by fitting the recorded PIE curves with a linear combination of the PIE curves of the individual C9H10 and C8H8 isomers. Styrene (C6H5C2H3) was found to be the exclusive product contributing to m/z = 104 (C8H8+), whereas 3-phenylpropene, cis-1-phenylpropene, and 2-phenylpropene with branching ratios of 96 4 percent, 3 3 percent, and 1 1 percent could account for signal at m/z = 118 (C9H10+). Although searched for carefully, no evidence of the bicyclic indane molecule could be provided. The reaction mechanisms and branching ratios are explained in terms of electronic structure calculations nicely agreeing with a recent crossed molecular beam study on this …
Date: February 22, 2012
Creator: Manoa, University of Hawaii at; Laboratories, Sandia National; Zhang, Fangtong; Kaiser, Ralf I.; Golan, Amir; Ahmed, Musahid et al.
Object Type: Article
System: The UNT Digital Library
Introduction to Neutron Coincidence Counter Design Based on Boron-10 (open access)

Introduction to Neutron Coincidence Counter Design Based on Boron-10

The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.
Date: January 22, 2012
Creator: Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T. & Siciliano, Edward R.
Object Type: Report
System: The UNT Digital Library
Detection of volatile organic compounds using surface enhanced Raman scattering (open access)

Detection of volatile organic compounds using surface enhanced Raman scattering

The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.
Date: March 22, 2012
Creator: Chang, A. S.; Maiti, A.; Ileri, N.; Bora, M.; Larson, C. C.; Britten, J. A. et al.
Object Type: Article
System: The UNT Digital Library
Generic Model Host System Design (open access)

Generic Model Host System Design

There are many simulation codes for accelerator modelling; each one has some strength but not all. A platform which can host multiple modelling tools would be ideal for various purposes. The model platform along with infrastructure support can be used not only for online applications but also for offline purposes. Collaboration is formed for the effort of providing such a platform. In order to achieve such a platform, a set of common physics data structure has to be set. Application Programming Interface (API) for physics applications should also be defined within a model data provider. A preliminary platform design and prototype is discussed.
Date: June 22, 2012
Creator: Chu, Chungming; Wu, Juhao; Qiang, Ji & Shen, Guobao
Object Type: Article
System: The UNT Digital Library
Recovery Act: SeaMicro Volume Server Power Reduction Research Development (open access)

Recovery Act: SeaMicro Volume Server Power Reduction Research Development

Cloud data centers are projected to be the fastest growing segment of the server market through 2015, according to IDC. Increasingly people and businesses rely on the Cloud to deliver digital content quickly and efficiently. Recovery Act funding from the Department of Energy has helped SeaMicro's technologies enhance the total cost of operation, performance and energy efficiency in large data center and Cloud environments. SeaMicro's innovative supercomputer fabric connects thousands of processor cores, memory, storage and input/output traffic. The company's fabric supports multiple processor instruction sets. Current systems featuring SeaMicro technology typically use one quarter the power and take one sixth the space of traditional servers with the same compute performance, yet deliver up to 12 times the bandwidth per core. Mozilla and eHarmony are two customers successfully using SeaMicro's technology. Numerous non-public customers have been successfully using the SeaMicro product in test and production facilities. As a result of the Recovery Act funding from the U.S. Department of Energy, more than 50 direct jobs were created at SeaMicro. To date, they primarily have been high-value, engineering jobs. Hardware, software and manufacturing engineering positions have been created, as well as sales and sales engineering. The positions have allowed SeaMicro to …
Date: March 22, 2012
Creator: Lauterbach, Gary
Object Type: Report
System: The UNT Digital Library
Studies of Space Charge Effects in the Proposed CERN PS2 (open access)

Studies of Space Charge Effects in the Proposed CERN PS2

A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.
Date: June 22, 2012
Creator: Qiang, Ji; Ryne, Robert; De Maria, Riccardo; Macridin, Alexandru; Spentzouris, Panagiotis; Papaphilippou, Yannis et al.
Object Type: Article
System: The UNT Digital Library
Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report (open access)

Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, α-ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.
Date: October 22, 2012
Creator: Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A & Xu, Yifan
Object Type: Report
System: The UNT Digital Library
Heavy Quarkonium Production at LHC through W Boson Decays (open access)

Heavy Quarkonium Production at LHC through W Boson Decays

The production of the heavy (c{bar c})-quarkonium, (c{bar b})-quarkonium, and (b{bar b})-quarkonium states [({bar Q}') quarkonium for short], via the W{sup +} semi-inclusive decays, has been systematically studied within the framework of the nonrelativistic QCD. In addition to the two color-singlet S-wave states, we also discuss the production of the four color-singlet P-wave states |(Q{bar Q}')({sup 1}P{sub 1}){sub 1}> and |(Q{bar Q}')({sup 3}P{sub J}){sub 1}> [with J = (0,1,2)] together with the two color-octet components |(Q{bar Q}')({sup 1}S{sub 0}){sub 8}> and |(Q{bar Q}')({sup 3}S{sub 1}){sub 8}>. Improved trace technology is adopted to derive the simplified analytic expressions at the amplitude level, which shall be useful for dealing with the following cascade decay channels. At the LHC with the luminosity L {proportional_to} 10{sup 34} cm{sup -2} s{sup -1} and the center-of-mass energy {radical}S = 14 TeV, sizable heavy-quarkonium events can be produced through the W{sup +} boson decays; i.e., 2.57 x 10{sup 6} {eta}{sub c}, 2.65 x 10{sup 6} J/{Psi}, and 2.40 x 10{sup 6} P-wave charmonium events per year can be obtained, and 1.01 x 10{sup 5} B{sub c}, 9.11 x 10{sup 4} B*{sub c}, and 3.16 x 10{sup 4} P-wave (c{bar b})-quarkonium events per year can be obtained. Main …
Date: May 22, 2012
Creator: Liao, Qi-Li; U., /Chongqing; Wu, Xing-Gang; /SLAC, /Chongqing U.; Jiang, Jun; Yang, Zhi et al.
Object Type: Article
System: The UNT Digital Library
Award Nomination Information for Lawrence Livermore National Laboratory SkillSoft Perspectives Conference 2012 (open access)

Award Nomination Information for Lawrence Livermore National Laboratory SkillSoft Perspectives Conference 2012

None
Date: February 22, 2012
Creator: Positeri, L A & Molyneaux, B R
Object Type: Article
System: The UNT Digital Library
Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams (open access)

Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams

Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase below 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.
Date: June 22, 2012
Creator: Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi; Hemsing, Erik; Marcus, Gabriel; Marinelli, Agostino et al.
Object Type: Article
System: The UNT Digital Library
Facts About XLDB-2011 (open access)

Facts About XLDB-2011

This note provides details of the 5th Extremely Large Databases Conference and Invitational Workshop that were held in 2011 on 18-19 October and 20 October, respectively, at the SLAC National Accelerator Laboratory in Menlo Park, California. The main goals of the conference were: (1) Encourage and accelerate the exchange of ideas between users trying to build extremely large databases worldwide and database solution providers; (2) Share lessons, trends, innovations, and challenges related to building extremely large databases; (3) Facilitate the development and growth of practical technologies for extremely large databases; and (4) Strengthen, expand, and engage the XLDB community.
Date: February 22, 2012
Creator: Becla, Jacek; Lim, Kian-Tat & Wang, Daniel L.
Object Type: Article
System: The UNT Digital Library
Final Technical Report (open access)

Final Technical Report

During the past decades, considerable theoretical efforts have been devoted to studying the electronic and geometric structures and related properties of surfaces. Such efforts are particularly important for systems like the actinides for which experimental work is relatively difficult to perform due to material problems and toxicity. The actinides are characterized by a gradual filling of the 5f-electron shell with the degree of localization increasing with the atomic number Z along the last series of the periodic table. The open shell of the 5f electrons determines the atomic, molecular, and solid state properties of the actinide elements and their compounds and understanding the quantum mechanics of the 5f electrons is the defining issue in the chemistry and physics of actinide elements. These elements are also characterized by the increasing prominence of relativistic effects and their studies can, in fact, help us understand the role of relativity throughout the periodic table. However, the electronic and geometric structures of the actinides, specifically the trans-uranium actinides and the roles of the 5f electrons in chemical bonding are still not well understood. This is crucial not only for our understanding of the actinides but also for the fact that the actinides constitute 'the missing …
Date: May 22, 2012
Creator: Ray, Dr. Asok K.
Object Type: Report
System: The UNT Digital Library
Alternative Energy for Higher Education (open access)

Alternative Energy for Higher Education

This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time “dashboard” and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.
Date: February 22, 2012
Creator: Michael Cherney, PhD
Object Type: Text
System: The UNT Digital Library
Functional Bounding Content Envelope for Type B Radioactive Material Transportation Packages (open access)

Functional Bounding Content Envelope for Type B Radioactive Material Transportation Packages

None
Date: May 22, 2012
Creator: Sitaraman, S.; Kim, S. & Anderson, B.
Object Type: Article
System: The UNT Digital Library
2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012 (open access)

2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012

The Gordon Research Conference on CELLULAR & MOLECULAR FUNGAL BIOLOGY was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.
Date: June 22, 2012
Creator: Berman, Judith
Object Type: Article
System: The UNT Digital Library
Integrating NASA Earth Science Capabilities into the Interagency Modeling and Atmospheric Assessment Center for Improvements in Atmospheric Transport and Dispersion Modeling (open access)

Integrating NASA Earth Science Capabilities into the Interagency Modeling and Atmospheric Assessment Center for Improvements in Atmospheric Transport and Dispersion Modeling

None
Date: October 22, 2012
Creator: Simpson, M D; Jasinski, M F; Borak, J; Blonski, S; Spruce, J; Walker, H et al.
Object Type: Report
System: The UNT Digital Library
Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel (open access)

Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).
Date: October 22, 2012
Creator: Raymond, R. E. & Evans, K. M.
Object Type: Article
System: The UNT Digital Library
Reconstruction Algorithm for Point Source Neutron Imaging through Finite Thickness Scintillator (open access)

Reconstruction Algorithm for Point Source Neutron Imaging through Finite Thickness Scintillator

None
Date: January 22, 2012
Creator: Wang, H; Tang, V; McCarrick, J F & Moran, S
Object Type: Article
System: The UNT Digital Library
Hydrogen Absorption in Pd-based Nanostructures - Final Report (open access)

Hydrogen Absorption in Pd-based Nanostructures - Final Report

Pd is known to absorb hydrogen. Molecules are normally chemisorbed at the surface in a process where the molecule breaks into two hydrogen atoms, and the protons are then absorbed into the bulk. This process consists of electron filling holes in the Pd 4d band near the Fermi energy, which due to the high density of states at the Fermi energy, is an energetically favorable process. Our aim with this project was to determine possible changes in magnetic properties with Pd nm-length-scale thick layers intercalated by magnetic materials. Before the start of this work, the literature indicated that there were several possible scenarios by which this could happen: i) the Pd will be magnetized due to a proximity effect with nearby magnetic layers, resulting in changes in the magnetization due to H2 absorption; ii) some H will be absorbed into the magnetic layers, causing a change in the magnetic exchange interactions; or iii) absorption of H2 will cause an expansion of the lattice, resulting in a magnetoelastic effect which changes the magnetic properties.
Date: October 22, 2012
Creator: Lederman, David
Object Type: Report
System: The UNT Digital Library
Separating the Minor Actinides Through Advances in Selective Coordination Chemistry (open access)

Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.
Date: August 22, 2012
Creator: Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I. & Carter, Jennifer C.
Object Type: Report
System: The UNT Digital Library
Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics (open access)

Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics

The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.
Date: January 22, 2012
Creator: Eser, Erten
Object Type: Report
System: The UNT Digital Library
Micro-Analysis of Actinide Minerals for Nuclear Forensics and Treaty Verification (open access)

Micro-Analysis of Actinide Minerals for Nuclear Forensics and Treaty Verification

Micro-Raman spectroscopy has been demonstrated to be a viable tool for nondestructive determination of the crystal phase of relevant minerals. Collecting spectra on particles down to 5 microns in size was completed. Some minerals studied were weak scatterers and were better studied with the other techniques. A decent graphical software package should easily be able to compare collected spectra to a spectral library as well as subtract out matrix vibration peaks. Due to the success and unequivocal determination of the most common mineral false positive (zircon), it is clear that Raman has a future for complementary, rapid determination of unknown particulate samples containing actinides.
Date: March 22, 2012
Creator: M. Morey, M. Manard, R. Russo, G. Havrilla
Object Type: Article
System: The UNT Digital Library
2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012 (open access)

2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012

This conference will highlight the urgency for research on graphitic carbon materials and gather scientists in physics, chemistry, and engineering to tackle the challenges in this field. The conference will focus on scalable synthesis, characterization, novel physical and electronic properties, structure-properties relationship studies, and new applications of the carbon materials. Contributors
Date: June 22, 2012
Creator: Fertig, Herbert
Object Type: Article
System: The UNT Digital Library
Defining How a Microbial Cell Senses and Responds to a Redox Active Environment (open access)

Defining How a Microbial Cell Senses and Responds to a Redox Active Environment

This grant was for four years, and the work was designed to look at the mechanisms of extracellular electron transfer by the dissimilatory iron reducing bacteria Shewanella oneidensis MR-1, and other closely related Shewanella strains and species. During this work, we defined many of the basic physiological and biochemical properties of the Shewanella group, Much of which was summarized in review articles. We also finished and published the genome sequence of strain MR-1, the first of the shewanellae to have its genome sequenced. Control at the transcriptional and translational level was studied in collaboration with colleagues at PNNL and ANL. We utilized synchrotron X-ray radiation to image both the bacteria and the metal oxide particles via a technique called STXM, synchrotron X-ray absorption (ref. No.9), and X-ray microbeam analysis. We purified several of the cytochromes involved with metal reduction, and improved gene annotation of the MR-1 genome. The conductive appendages (nanowires) of MR-1 were described and characterized. Comparative genomics and biochemistry revealed that the pathway for the utilization of N-acetyl glucosamine in the various strains of Shewanella exhibited great variability, and had a number of previously unknown genes.
Date: June 22, 2012
Creator: Nealson, Kenneth H.
Object Type: Report
System: The UNT Digital Library